1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
from ...converter import Converter |
6
|
|
|
from ...results_manager import ResultsManager |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class BasePopulationOptimizer: |
10
|
|
|
def __init__( |
11
|
|
|
self, |
12
|
|
|
search_space, |
13
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
14
|
|
|
): |
15
|
|
|
super().__init__() |
16
|
|
|
self.conv = Converter(search_space) |
17
|
|
|
self.results_mang = ResultsManager(self.conv) |
18
|
|
|
self.initialize = initialize |
19
|
|
|
|
20
|
|
|
self.eval_times = [] |
21
|
|
|
self.iter_times = [] |
22
|
|
|
|
23
|
|
|
def _iterations(self, positioners): |
24
|
|
|
nth_iter = 0 |
25
|
|
|
for p in positioners: |
26
|
|
|
nth_iter = nth_iter + len(p.pos_new_list) |
27
|
|
|
|
28
|
|
|
return nth_iter |
29
|
|
|
|
30
|
|
|
def _create_population(self, Optimizer): |
31
|
|
|
if isinstance(self.population, int): |
32
|
|
|
population = [] |
33
|
|
|
for pop_ in range(self.population): |
34
|
|
|
population.append( |
35
|
|
|
Optimizer(self.conv.search_space, rand_rest_p=self.rand_rest_p) |
36
|
|
|
) |
37
|
|
|
else: |
38
|
|
|
population = self.population |
39
|
|
|
|
40
|
|
|
n_inits = 0 |
41
|
|
|
for key_ in self.initialize.keys(): |
42
|
|
|
init_value = self.initialize[key_] |
43
|
|
|
if isinstance(init_value, int): |
44
|
|
|
n_inits += init_value |
45
|
|
|
else: |
46
|
|
|
n_inits += len(init_value) |
47
|
|
|
|
48
|
|
|
if n_inits < len(population): |
49
|
|
|
print("\n Warning: Not enough initial positions for population size") |
50
|
|
|
print(" Population size is reduced to", n_inits) |
51
|
|
|
population = population[:n_inits] |
52
|
|
|
|
53
|
|
|
return population |
54
|
|
|
|
55
|
|
|
def finish_initialization(self): |
56
|
|
|
pass |
57
|
|
|
|