| Conditions | 2 |
| Total Lines | 29 |
| Code Lines | 22 |
| Lines | 29 |
| Ratio | 100 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 24 | View Code Duplication | @pytest.mark.parametrize(*opt_local_l) |
|
|
|
|||
| 25 | def test_local_perf(Optimizer): |
||
| 26 | def objective_function(para): |
||
| 27 | score = -para["x1"] * para["x1"] |
||
| 28 | return score |
||
| 29 | |||
| 30 | search_space = {"x1": np.arange(-100, 101, 1)} |
||
| 31 | initialize = {"vertices": 2} |
||
| 32 | |||
| 33 | n_opts = 33 |
||
| 34 | n_iter = 100 |
||
| 35 | |||
| 36 | scores = [] |
||
| 37 | for rnd_st in tqdm(range(n_opts)): |
||
| 38 | opt = Optimizer(search_space, initialize=initialize) |
||
| 39 | opt.search( |
||
| 40 | objective_function, |
||
| 41 | n_iter=n_iter, |
||
| 42 | random_state=rnd_st, |
||
| 43 | memory=False, |
||
| 44 | verbosity=False, |
||
| 45 | ) |
||
| 46 | |||
| 47 | scores.append(opt.best_score) |
||
| 48 | score_mean = np.array(scores).mean() |
||
| 49 | |||
| 50 | print("\n score_mean", score_mean) |
||
| 51 | |||
| 52 | assert score_mean > -5 |
||
| 53 |