Conditions | 2 |
Total Lines | 64 |
Code Lines | 43 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import numpy as np |
||
60 | @pytest.mark.parametrize(*optimizers) |
||
61 | def test_constr_opt_2(Optimizer): |
||
62 | n_iter = 50 |
||
63 | |||
64 | def objective_function(para): |
||
65 | score = -para["x1"] * para["x1"] |
||
66 | return score |
||
67 | |||
68 | search_space = { |
||
69 | "x1": np.arange(-10, 10, 0.1), |
||
70 | } |
||
71 | |||
72 | def constraint_1(para): |
||
73 | return para["x1"] > -5 |
||
74 | |||
75 | def constraint_2(para): |
||
76 | return para["x1"] < 5 |
||
77 | |||
78 | constraints_list = [constraint_1, constraint_2] |
||
79 | |||
80 | opt = Optimizer(search_space, constraints=constraints_list) |
||
81 | opt.search(objective_function, n_iter=n_iter) |
||
82 | |||
83 | search_data = opt.search_data |
||
84 | x0_values = search_data["x1"].values |
||
85 | |||
86 | print("\n search_data \n", search_data, "\n") |
||
87 | |||
88 | assert np.all(x0_values > -5) |
||
89 | assert np.all(x0_values < 5) |
||
90 | |||
91 | n_new_positions = 0 |
||
92 | n_new_scores = 0 |
||
93 | |||
94 | n_current_positions = 0 |
||
95 | n_current_scores = 0 |
||
96 | |||
97 | n_best_positions = 0 |
||
98 | n_best_scores = 0 |
||
99 | |||
100 | for optimizer in opt.optimizers: |
||
101 | n_new_positions = n_new_positions + len(optimizer.pos_new_list) |
||
102 | n_new_scores = n_new_scores + len(optimizer.score_new_list) |
||
103 | |||
104 | n_current_positions = n_current_positions + len(optimizer.pos_current_list) |
||
105 | n_current_scores = n_current_scores + len(optimizer.score_current_list) |
||
106 | |||
107 | n_best_positions = n_best_positions + len(optimizer.pos_best_list) |
||
108 | n_best_scores = n_best_scores + len(optimizer.score_best_list) |
||
109 | |||
110 | print("\n optimizer", optimizer) |
||
111 | print(" n_new_positions", optimizer.pos_new_list) |
||
112 | print(" n_new_scores", optimizer.score_new_list) |
||
113 | |||
114 | assert n_new_positions == n_iter |
||
115 | assert n_new_scores == n_iter |
||
116 | |||
117 | assert n_current_positions == n_current_scores |
||
118 | assert n_current_positions <= n_new_positions |
||
119 | |||
120 | assert n_best_positions == n_best_scores |
||
121 | assert n_best_positions <= n_new_positions |
||
122 | |||
123 | assert n_new_positions == n_new_scores |
||
124 |