1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from sklearn.linear_model import BayesianRidge |
8
|
|
|
from sklearn.gaussian_process import GaussianProcessRegressor |
9
|
|
|
from sklearn.gaussian_process.kernels import Matern, WhiteKernel, RBF |
10
|
|
|
from sklearn.ensemble import ExtraTreesRegressor as _ExtraTreesRegressor_ |
11
|
|
|
from sklearn.ensemble import RandomForestRegressor as _RandomForestRegressor_ |
12
|
|
|
from sklearn.ensemble import ( |
13
|
|
|
GradientBoostingRegressor as _GradientBoostingRegressor_, |
14
|
|
|
) |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class EnsembleRegressor: |
18
|
|
|
def __init__(self, estimators, min_std=0.001): |
19
|
|
|
self.estimators = estimators |
20
|
|
|
self.min_std = min_std |
21
|
|
|
|
22
|
|
|
def fit(self, X, y): |
23
|
|
|
for estimator in self.estimators: |
24
|
|
|
estimator.fit(X, np.ravel(y)) |
25
|
|
|
|
26
|
|
|
def predict(self, X, return_std=False): |
27
|
|
|
predictions = [] |
28
|
|
|
for estimator in self.estimators: |
29
|
|
|
predictions.append(estimator.predict(X).reshape(-1, 1)) |
30
|
|
|
|
31
|
|
|
predictions = np.array(predictions) |
32
|
|
|
mean = predictions.mean(axis=0) |
33
|
|
|
std = predictions.std(axis=0) |
34
|
|
|
|
35
|
|
|
std[std < self.min_std] = self.min_std |
36
|
|
|
|
37
|
|
|
if return_std: |
38
|
|
|
|
39
|
|
|
return mean, std |
40
|
|
|
return mean |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def _return_std(X, trees, predictions, min_variance): |
44
|
|
|
""" |
45
|
|
|
used from: |
46
|
|
|
https://github.com/scikit-optimize/scikit-optimize/blob/master/skopt/learning/forest.py |
47
|
|
|
""" |
48
|
|
|
std = np.zeros(len(X)) |
49
|
|
|
trees = list(trees) |
50
|
|
|
|
51
|
|
|
for tree in trees: |
52
|
|
|
if isinstance(tree, np.ndarray): |
53
|
|
|
tree = tree[0] |
54
|
|
|
|
55
|
|
|
var_tree = tree.tree_.impurity[tree.apply(X)] |
56
|
|
|
var_tree[var_tree < min_variance] = min_variance |
57
|
|
|
mean_tree = tree.predict(X) |
58
|
|
|
std += var_tree + mean_tree ** 2 |
59
|
|
|
|
60
|
|
|
std /= len(trees) |
61
|
|
|
std -= predictions ** 2.0 |
62
|
|
|
std[std < 0.0] = 0.0 |
63
|
|
|
std = std ** 0.5 |
64
|
|
|
return std |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
class TreeEnsembleBase: |
68
|
|
|
def __init__(self, min_variance=0.001, **kwargs): |
69
|
|
|
self.min_variance = min_variance |
70
|
|
|
super().__init__(**kwargs) |
71
|
|
|
|
72
|
|
|
def fit(self, X, y): |
73
|
|
|
super().fit(X, np.ravel(y)) |
74
|
|
|
|
75
|
|
|
def predict(self, X, return_std=False): |
76
|
|
|
mean = super().predict(X) |
77
|
|
|
|
78
|
|
|
if return_std: |
79
|
|
|
std = _return_std(X, self.estimators_, mean, self.min_variance) |
80
|
|
|
|
81
|
|
|
return mean, std |
82
|
|
|
return mean |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
class RandomForestRegressor(TreeEnsembleBase, _RandomForestRegressor_): |
86
|
|
|
def __init__(self, min_variance=0.001, **kwargs): |
87
|
|
|
super().__init__(**kwargs) |
88
|
|
|
|
89
|
|
|
|
90
|
|
|
class ExtraTreesRegressor(TreeEnsembleBase, _ExtraTreesRegressor_): |
91
|
|
|
def __init__(self, min_variance=0.001, **kwargs): |
92
|
|
|
super().__init__(**kwargs) |
93
|
|
|
|
94
|
|
|
|
95
|
|
|
class GradientBoostingRegressor(TreeEnsembleBase, _GradientBoostingRegressor_): |
96
|
|
|
def __init__(self, min_variance=0.001, **kwargs): |
97
|
|
|
super().__init__(**kwargs) |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
class GPR: |
101
|
|
|
def __init__(self): |
102
|
|
|
length_scale_param = 1 |
103
|
|
|
length_scale_bounds_param = (1e-05, 100000.0) |
104
|
|
|
nu_param = 0.5 |
105
|
|
|
matern = Matern( |
106
|
|
|
# length_scale=length_scale_param, |
107
|
|
|
# length_scale_bounds=length_scale_bounds_param, |
108
|
|
|
nu=nu_param, |
109
|
|
|
) |
110
|
|
|
|
111
|
|
|
self.gpr = GaussianProcessRegressor( |
112
|
|
|
kernel=matern + WhiteKernel(), n_restarts_optimizer=0 |
113
|
|
|
) |
114
|
|
|
|
115
|
|
|
def fit(self, X, y): |
116
|
|
|
self.gpr.fit(X, y) |
117
|
|
|
|
118
|
|
|
def predict(self, X, return_std=False): |
119
|
|
|
return self.gpr.predict(X, return_std=return_std) |
120
|
|
|
|
121
|
|
|
|
122
|
|
|
class GPR_linear: |
123
|
|
|
def __init__(self): |
124
|
|
|
self.gpr = BayesianRidge() |
125
|
|
|
|
126
|
|
|
def fit(self, X, y): |
127
|
|
|
self.gpr.fit(X, y) |
128
|
|
|
|
129
|
|
|
def predict(self, X, return_std=False): |
130
|
|
|
return self.gpr.predict(X, return_std=return_std) |
131
|
|
|
|