|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import random |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
from .search_tracker import SearchTracker |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class BaseOptimizer(SearchTracker): |
|
11
|
|
|
def __init__(self, search_space, rand_rest_p=0): |
|
12
|
|
|
super().__init__() |
|
13
|
|
|
self.search_space = search_space |
|
14
|
|
|
self.space_dim_size = np.array( |
|
15
|
|
|
[len(array) for array in search_space.values()] |
|
16
|
|
|
) |
|
17
|
|
|
self.rand_rest_p = rand_rest_p |
|
18
|
|
|
|
|
19
|
|
|
self.optimizers = [self] |
|
20
|
|
|
|
|
21
|
|
|
def move_random(self): |
|
22
|
|
|
self.pos_new = np.random.randint( |
|
23
|
|
|
self.space_dim_size, size=self.space_dim_size.shape |
|
24
|
|
|
) |
|
25
|
|
|
return self.pos_new |
|
26
|
|
|
|
|
27
|
|
|
def track_nth_iter(func): |
|
28
|
|
|
def wrapper(self, *args, **kwargs): |
|
29
|
|
|
self.nth_iter = len(self.score_new_list) |
|
30
|
|
|
return func(self, *args, **kwargs) |
|
31
|
|
|
|
|
32
|
|
|
return wrapper |
|
33
|
|
|
|
|
34
|
|
|
def random_restart(func): |
|
35
|
|
|
def wrapper(self, *args, **kwargs): |
|
36
|
|
|
if self.rand_rest_p > random.uniform(0, 1): |
|
37
|
|
|
return self.move_random() |
|
38
|
|
|
else: |
|
39
|
|
|
return func(self, *args, **kwargs) |
|
40
|
|
|
|
|
41
|
|
|
return wrapper |
|
42
|
|
|
|
|
43
|
|
|
@track_nth_iter |
|
44
|
|
|
def init_pos(self, pos): |
|
45
|
|
|
self.pos_new = pos |
|
46
|
|
|
|
|
47
|
|
|
def evaluate(self, score_new): |
|
48
|
|
|
self.score_new = score_new |
|
49
|
|
|
|
|
50
|
|
|
self._evaluate_new2current(score_new) |
|
51
|
|
|
self._evaluate_current2best() |
|
52
|
|
|
|