| Total Complexity | 3 |
| Total Lines | 38 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import time |
||
| 2 | import numpy as np |
||
| 3 | from sklearn.datasets import load_breast_cancer |
||
| 4 | from sklearn.model_selection import cross_val_score |
||
| 5 | from sklearn.tree import DecisionTreeClassifier |
||
| 6 | from gradient_free_optimizers import ( |
||
| 7 | RandomSearchOptimizer, |
||
| 8 | HillClimbingOptimizer, |
||
| 9 | ) |
||
| 10 | |||
| 11 | |||
| 12 | def objective_function(para): |
||
| 13 | score = -para["x1"] * para["x1"] |
||
| 14 | return score |
||
| 15 | |||
| 16 | |||
| 17 | search_space = { |
||
| 18 | "x1": np.arange(0, 100000, 0.1), |
||
| 19 | } |
||
| 20 | |||
| 21 | |||
| 22 | def test_max_time_0(): |
||
| 23 | c_time1 = time.time() |
||
| 24 | opt = RandomSearchOptimizer(search_space) |
||
| 25 | opt.search(objective_function, n_iter=1000000, max_time=0.1) |
||
| 26 | diff_time1 = time.time() - c_time1 |
||
| 27 | |||
| 28 | assert diff_time1 < 1 |
||
| 29 | |||
| 30 | |||
| 31 | def test_max_time_1(): |
||
| 32 | c_time1 = time.time() |
||
| 33 | opt = RandomSearchOptimizer(search_space) |
||
| 34 | opt.search(objective_function, n_iter=1000000, max_time=1) |
||
| 35 | diff_time1 = time.time() - c_time1 |
||
| 36 | |||
| 37 | assert 0.3 < diff_time1 < 2 |
||
| 38 |