1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import pytest |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from gradient_free_optimizers import ( |
9
|
|
|
HillClimbingOptimizer, |
10
|
|
|
StochasticHillClimbingOptimizer, |
11
|
|
|
TabuOptimizer, |
12
|
|
|
RandomRestartHillClimbingOptimizer, |
13
|
|
|
RandomAnnealingOptimizer, |
14
|
|
|
SimulatedAnnealingOptimizer, |
15
|
|
|
) |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def objective_function(para): |
19
|
|
|
score = -para["x1"] * para["x1"] |
20
|
|
|
return score |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
search_space = {"x1": np.arange(-100, 101, 1)} |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
HillClimbing_para = [ |
27
|
|
|
({"epsilon": 0.0001}), |
28
|
|
|
({"epsilon": 1}), |
29
|
|
|
({"epsilon": 10}), |
30
|
|
|
({"epsilon": 10000}), |
31
|
|
|
({"distribution": "normal"}), |
32
|
|
|
({"distribution": "laplace"}), |
33
|
|
|
({"distribution": "logistic"}), |
34
|
|
|
({"distribution": "gumbel"}), |
35
|
|
|
({"n_neighbours": 1}), |
36
|
|
|
({"n_neighbours": 10}), |
37
|
|
|
({"n_neighbours": 100}), |
38
|
|
|
({"rand_rest_p": 0}), |
39
|
|
|
({"rand_rest_p": 0.5}), |
40
|
|
|
({"rand_rest_p": 1}), |
41
|
|
|
({"rand_rest_p": 10}), |
42
|
|
|
] |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
pytest_wrapper = ("para", HillClimbing_para) |
46
|
|
|
|
47
|
|
|
optimizers_local = ( |
48
|
|
|
"Optimizer", |
49
|
|
|
[ |
50
|
|
|
(HillClimbingOptimizer), |
51
|
|
|
(StochasticHillClimbingOptimizer), |
52
|
|
|
(TabuOptimizer), |
53
|
|
|
(SimulatedAnnealingOptimizer), |
54
|
|
|
(RandomRestartHillClimbingOptimizer), |
55
|
|
|
(RandomAnnealingOptimizer), |
56
|
|
|
], |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
@pytest.mark.parametrize(*optimizers_local) |
61
|
|
|
@pytest.mark.parametrize(*pytest_wrapper) |
62
|
|
|
def test_HillClimbing_para(Optimizer, para): |
63
|
|
|
opt = Optimizer(search_space, **para) |
64
|
|
|
opt.search( |
65
|
|
|
objective_function, |
66
|
|
|
n_iter=10, |
67
|
|
|
memory=False, |
68
|
|
|
verbosity=False, |
69
|
|
|
initialize={"vertices": 1}, |
70
|
|
|
) |
71
|
|
|
|
72
|
|
|
for optimizer in opt.optimizers: |
73
|
|
|
para_key = list(para.keys())[0] |
74
|
|
|
para_value = getattr(optimizer, para_key) |
75
|
|
|
|
76
|
|
|
assert para_value == para[para_key] |
77
|
|
|
|