Passed
Push — master ( 7dc8c7...0f59c2 )
by Simon
03:25
created

tests._test_debug   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 67
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 50
dl 0
loc 67
rs 10
c 0
b 0
f 0
wmc 1

1 Function

Rating   Name   Duplication   Size   Complexity  
A objective_function() 0 3 1
1
import numpy as np
2
from gradient_free_optimizers import (
3
    HillClimbingOptimizer,
4
    StochasticHillClimbingOptimizer,
5
    RepulsingHillClimbingOptimizer,
6
    RandomSearchOptimizer,
7
    RandomRestartHillClimbingOptimizer,
8
    RandomAnnealingOptimizer,
9
    SimulatedAnnealingOptimizer,
10
    ParallelTemperingOptimizer,
11
    ParticleSwarmOptimizer,
12
    EvolutionStrategyOptimizer,
13
    BayesianOptimizer,
14
    TreeStructuredParzenEstimators,
15
    DecisionTreeOptimizer,
16
    EnsembleOptimizer,
17
)
18
19
# check if there are any debug-prints left in code
20
21
22
optimizer_list = [
23
    HillClimbingOptimizer,
24
    StochasticHillClimbingOptimizer,
25
    RepulsingHillClimbingOptimizer,
26
    RandomSearchOptimizer,
27
    RandomRestartHillClimbingOptimizer,
28
    RandomAnnealingOptimizer,
29
    SimulatedAnnealingOptimizer,
30
    ParallelTemperingOptimizer,
31
    ParticleSwarmOptimizer,
32
    EvolutionStrategyOptimizer,
33
    BayesianOptimizer,
34
    TreeStructuredParzenEstimators,
35
    DecisionTreeOptimizer,
36
    EnsembleOptimizer,
37
]
38
39
40
def objective_function(para):
41
    score = -para["x1"] * para["x1"]
42
    return score
43
44
45
search_space = {
46
    "x1": np.arange(0, 5, 1),
47
}
48
49
50
for optimizer in optimizer_list:
51
    opt0 = optimizer(search_space)
52
    opt0.search(objective_function, n_iter=15, verbosity=False, memory=False)
53
54
    opt1 = optimizer(search_space)
55
    opt1.search(objective_function, n_iter=15, verbosity=False)
56
57
    opt2 = optimizer(search_space)
58
    opt2.search(
59
        objective_function, n_iter=15, verbosity=False, memory_warm_start=opt1.results
60
    )
61
62
    opt3 = optimizer(search_space, initialize={"warm_start": [{"x1": 1}]})
63
    opt3.search(
64
        objective_function,
65
        n_iter=15,
66
        verbosity=False,
67
    )
68