Passed
Push — master ( 7ebd63...8bd9a3 )
by Simon
06:11
created

gradient_free_optimizers.optimizer_search.genetic_algorithm   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 78
Duplicated Lines 85.9 %

Importance

Changes 0
Metric Value
wmc 1
eloc 34
dl 67
loc 78
rs 10
c 0
b 0
f 0

1 Method

Rating   Name   Duplication   Size   Complexity  
A GeneticAlgorithmOptimizer.__init__() 30 30 1

How to fix   Duplicated Code   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from typing import List, Dict, Literal
6
7
from ..search import Search
8
from ..optimizers import GeneticAlgorithmOptimizer as _GeneticAlgorithmOptimizer
9
10
11 View Code Duplication
class GeneticAlgorithmOptimizer(_GeneticAlgorithmOptimizer, Search):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
    """
13
    A class implementing the **genetic algorithm** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `GeneticAlgorithmOptimizer`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    population : int
35
        The number of individuals in the population.
36
    offspring : int
37
        The number of offspring to generate in each generation.
38
    crossover : str
39
        The crossover operator to use.
40
    n_parents : int
41
        The number of parents to select for crossover.
42
    mutation_rate : float
43
        The mutation rate.
44
    crossover_rate : float
45
        The crossover rate.
46
    """
47
48
    def __init__(
49
        self,
50
        search_space: Dict[str, list],
51
        initialize: Dict[
52
            Literal["grid", "vertices", "random", "warm_start"], int | List
53
        ] = {"grid": 4, "random": 2, "vertices": 4},
54
        constraints: List[callable] = [],
55
        random_state: int = None,
56
        rand_rest_p: float = 0,
57
        nth_process: int = None,
58
        population=10,
59
        offspring=10,
60
        crossover="discrete-recombination",
61
        n_parents=2,
62
        mutation_rate=0.5,
63
        crossover_rate=0.5,
64
    ):
65
        super().__init__(
66
            search_space=search_space,
67
            initialize=initialize,
68
            constraints=constraints,
69
            random_state=random_state,
70
            rand_rest_p=rand_rest_p,
71
            nth_process=nth_process,
72
            population=population,
73
            offspring=offspring,
74
            crossover=crossover,
75
            n_parents=n_parents,
76
            mutation_rate=mutation_rate,
77
            crossover_rate=crossover_rate,
78
        )
79