|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import numpy as np |
|
6
|
|
|
|
|
7
|
|
|
indent = " " |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
def _print_times(eval_time, iter_time, n_iter): |
|
11
|
|
|
|
|
12
|
|
|
opt_time = iter_time - eval_time |
|
13
|
|
|
iterPerSec = n_iter / iter_time |
|
14
|
|
|
|
|
15
|
|
|
print( |
|
16
|
|
|
indent, |
|
17
|
|
|
"Evaluation time :", |
|
18
|
|
|
eval_time, |
|
19
|
|
|
"sec", |
|
20
|
|
|
indent, |
|
21
|
|
|
"[{} %]".format(round(eval_time / iter_time * 100, 2)), |
|
22
|
|
|
) |
|
23
|
|
|
print( |
|
24
|
|
|
indent, |
|
25
|
|
|
"Optimization time :", |
|
26
|
|
|
opt_time, |
|
27
|
|
|
"sec", |
|
28
|
|
|
indent, |
|
29
|
|
|
"[{} %]".format(round(opt_time / iter_time * 100, 2)), |
|
30
|
|
|
) |
|
31
|
|
|
if iterPerSec >= 1: |
|
32
|
|
|
print( |
|
33
|
|
|
indent, |
|
34
|
|
|
"Iteration time :", |
|
35
|
|
|
iter_time, |
|
36
|
|
|
"sec", |
|
37
|
|
|
indent, |
|
38
|
|
|
"[{} iter/sec]".format(round(iterPerSec, 2)), |
|
39
|
|
|
) |
|
40
|
|
|
else: |
|
41
|
|
|
secPerIter = iter_time / n_iter |
|
42
|
|
|
print( |
|
43
|
|
|
indent, |
|
44
|
|
|
"Iteration time :", |
|
45
|
|
|
iter_time, |
|
46
|
|
|
"sec", |
|
47
|
|
|
indent, |
|
48
|
|
|
"[{} sec/iter]".format(round(secPerIter, 2)), |
|
49
|
|
|
) |
|
50
|
|
|
print(" ") |
|
51
|
|
|
|
|
52
|
|
|
|
|
53
|
|
|
def align_para_names(para_names): |
|
54
|
|
|
str_lengths = [len(str_) for str_ in para_names] |
|
55
|
|
|
max_length = max(str_lengths) |
|
56
|
|
|
|
|
57
|
|
|
para_names_align = {} |
|
58
|
|
|
for para_name, str_length in zip(para_names, str_lengths): |
|
59
|
|
|
added_spaces = max_length - str_length |
|
60
|
|
|
para_names_align[para_name] = " " * added_spaces |
|
61
|
|
|
|
|
62
|
|
|
return para_names_align |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
def _print_results(objective_function, score_best, para_best, random_seed): |
|
66
|
|
|
print("\nResults: '{}'".format(objective_function.__name__), " ") |
|
67
|
|
|
if para_best is None: |
|
68
|
|
|
print(indent, "Best score:", score_best, " ") |
|
69
|
|
|
print(indent, "Best parameter:", para_best, " ") |
|
70
|
|
|
else: |
|
71
|
|
|
para_names = list(para_best.keys()) |
|
72
|
|
|
para_names_align = align_para_names(para_names) |
|
73
|
|
|
|
|
74
|
|
|
print(indent, "Best score:", score_best, " ") |
|
75
|
|
|
print(indent, "Best parameter:") |
|
76
|
|
|
for para_key in para_best.keys(): |
|
77
|
|
|
added_spaces = para_names_align[para_key] |
|
78
|
|
|
print( |
|
79
|
|
|
indent, |
|
80
|
|
|
indent, |
|
81
|
|
|
"'{}'".format(para_key), |
|
82
|
|
|
"{}:".format(added_spaces), |
|
83
|
|
|
para_best[para_key], |
|
84
|
|
|
" ", |
|
85
|
|
|
) |
|
86
|
|
|
print(" ") |
|
87
|
|
|
print(indent, "Random seed:", random_seed, " ") |
|
88
|
|
|
print(" ") |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
def print_info( |
|
92
|
|
|
verbosity, |
|
93
|
|
|
objective_function, |
|
94
|
|
|
score_best, |
|
95
|
|
|
para_best, |
|
96
|
|
|
eval_times, |
|
97
|
|
|
iter_times, |
|
98
|
|
|
n_iter, |
|
99
|
|
|
random_seed, |
|
100
|
|
|
): |
|
101
|
|
|
|
|
102
|
|
|
eval_time = np.array(eval_times).sum() |
|
103
|
|
|
iter_time = np.array(iter_times).sum() |
|
104
|
|
|
|
|
105
|
|
|
if "print_results" in verbosity: |
|
106
|
|
|
_print_results(objective_function, score_best, para_best, random_seed) |
|
107
|
|
|
|
|
108
|
|
|
if "print_times" in verbosity: |
|
109
|
|
|
_print_times(eval_time, iter_time, n_iter) |
|
110
|
|
|
|