Passed
Push — master ( 7ebd63...8bd9a3 )
by Simon
06:11
created

GridSearchOptimizer.__init__()   B

Complexity

Conditions 3

Size

Total Lines 46
Code Lines 39

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 39
dl 0
loc 46
rs 8.9439
c 0
b 0
f 0
cc 3
nop 9

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from ..base_optimizer import BaseOptimizer
6
from .diagonal_grid_search import DiagonalGridSearchOptimizer
7
from .orthogonal_grid_search import OrthogonalGridSearchOptimizer
8
9
10
class GridSearchOptimizer(BaseOptimizer):
11
    name = "Grid Search"
12
    _name_ = "grid_search"
13
    __name__ = "GridSearchOptimizer"
14
15
    optimizer_type = "global"
16
    computationally_expensive = False
17
18
    def __init__(
19
        self,
20
        search_space,
21
        initialize={"grid": 4, "random": 2, "vertices": 4},
22
        constraints=[],
23
        random_state=None,
24
        rand_rest_p=0,
25
        nth_process=None,
26
        step_size=1,
27
        direction="diagonal",
28
    ):
29
        super().__init__(
30
            search_space=search_space,
31
            initialize=initialize,
32
            constraints=constraints,
33
            random_state=random_state,
34
            rand_rest_p=rand_rest_p,
35
            nth_process=nth_process,
36
        )
37
38
        self.step_size = step_size
39
        self.direction = direction
40
41
        if direction == "orthogonal":
42
            self.grid_search_opt = OrthogonalGridSearchOptimizer(
43
                search_space=search_space,
44
                initialize=initialize,
45
                constraints=constraints,
46
                random_state=random_state,
47
                rand_rest_p=rand_rest_p,
48
                nth_process=nth_process,
49
                step_size=step_size,
50
            )
51
        elif direction == "diagonal":
52
            self.grid_search_opt = DiagonalGridSearchOptimizer(
53
                search_space=search_space,
54
                initialize=initialize,
55
                constraints=constraints,
56
                random_state=random_state,
57
                rand_rest_p=rand_rest_p,
58
                nth_process=nth_process,
59
                step_size=step_size,
60
            )
61
        else:
62
            msg = ""
63
            raise Exception(msg)
64
65
    @BaseOptimizer.track_new_pos
66
    def iterate(self):
67
        return self.grid_search_opt.iterate()
68
69
    @BaseOptimizer.track_new_score
70
    def evaluate(self, score_new):
71
        self.grid_search_opt.evaluate(score_new)
72