Passed
Push — master ( 7ebd63...8bd9a3 )
by Simon
06:11
created

PowellsMethod.__init__()   A

Complexity

Conditions 1

Size

Total Lines 20
Code Lines 19

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 19
dl 0
loc 20
rs 9.45
c 0
b 0
f 0
cc 1
nop 8

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from typing import List, Dict, Literal
6
7
from ..search import Search
8
from ..optimizers import PowellsMethod as _PowellsMethod
9
10
11
class PowellsMethod(_PowellsMethod, Search):
12
    """
13
    A class implementing **pattern search** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `PowellsMethod`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    epsilon : float
35
        The step-size for the climbing.
36
    distribution : str
37
        The type of distribution to sample from.
38
    n_neighbours : int
39
        The number of neighbours to sample and evaluate before moving to the best
40
        of those neighbours.
41
    """
42
43
    def __init__(
44
        self,
45
        search_space: Dict[str, list],
46
        initialize: Dict[
47
            Literal["grid", "vertices", "random", "warm_start"], int | List
48
        ] = {"grid": 4, "random": 2, "vertices": 4},
49
        constraints: List[callable] = [],
50
        random_state: int = None,
51
        rand_rest_p: float = 0,
52
        nth_process: int = None,
53
        iters_p_dim: int = 10,
54
    ):
55
        super().__init__(
56
            search_space=search_space,
57
            initialize=initialize,
58
            constraints=constraints,
59
            random_state=random_state,
60
            rand_rest_p=rand_rest_p,
61
            nth_process=nth_process,
62
            iters_p_dim=iters_p_dim,
63
        )
64