Total Complexity | 2 |
Total Lines | 30 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import numpy as np |
||
6 | |||
7 | |||
8 | def objective_function(para): |
||
9 | score = -para["x1"] * para["x1"] |
||
10 | return score |
||
11 | |||
12 | |||
13 | search_space = {"x1": np.arange(-100, 101, 1)} |
||
14 | |||
15 | |||
16 | def _base_para_test_func(opt_para, optimizer): |
||
17 | opt = optimizer(search_space, **opt_para) |
||
18 | opt.search( |
||
19 | objective_function, |
||
20 | n_iter=30, |
||
21 | memory=False, |
||
22 | verbosity=False, |
||
23 | initialize={"vertices": 1}, |
||
24 | ) |
||
25 | |||
26 | para_key = list(opt_para.keys())[0] |
||
27 | para_value = getattr(opt, para_key) |
||
28 | |||
29 | assert para_value == opt_para[para_key] |
||
30 |