1
|
|
|
from tqdm import tqdm |
2
|
|
|
import numpy as np |
3
|
|
|
import pandas as pd |
4
|
|
|
|
5
|
|
|
from gradient_free_optimizers import ( |
6
|
|
|
HillClimbingOptimizer, |
7
|
|
|
StochasticHillClimbingOptimizer, |
8
|
|
|
TabuOptimizer, |
9
|
|
|
RandomSearchOptimizer, |
10
|
|
|
RandomRestartHillClimbingOptimizer, |
11
|
|
|
RandomAnnealingOptimizer, |
12
|
|
|
SimulatedAnnealingOptimizer, |
13
|
|
|
ParallelTemperingOptimizer, |
14
|
|
|
ParticleSwarmOptimizer, |
15
|
|
|
EvolutionStrategyOptimizer, |
16
|
|
|
BayesianOptimizer, |
17
|
|
|
TreeStructuredParzenEstimators, |
18
|
|
|
DecisionTreeOptimizer, |
19
|
|
|
) |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
optimizer_dict = { |
23
|
|
|
"HillClimbing": HillClimbingOptimizer, |
24
|
|
|
"StochasticHillClimbingOptimizer": StochasticHillClimbingOptimizer, |
25
|
|
|
} |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def create_convergence_data(optimizer_key): |
29
|
|
|
def objective_function(para): |
30
|
|
|
score = -para["x1"] * para["x1"] |
31
|
|
|
return score |
32
|
|
|
|
33
|
|
|
search_space = {"x1": np.arange(-100, 101, 1)} |
34
|
|
|
initialize = {"vertices": 2} |
35
|
|
|
|
36
|
|
|
n_opts = 30 |
37
|
|
|
n_iter = 100 |
38
|
|
|
|
39
|
|
|
scores_list = [] |
40
|
|
|
for rnd_st in tqdm(range(n_opts)): |
41
|
|
|
opt = optimizer_dict[optimizer_key](search_space) |
42
|
|
|
opt.search( |
43
|
|
|
objective_function, |
44
|
|
|
n_iter=n_iter, |
45
|
|
|
random_state=rnd_st, |
46
|
|
|
memory=False, |
47
|
|
|
verbosity=False, |
48
|
|
|
initialize=initialize, |
49
|
|
|
) |
50
|
|
|
|
51
|
|
|
scores_list.append(opt.results["score"]) |
52
|
|
|
|
53
|
|
|
convergence_data = pd.concat(scores_list, axis=1) |
54
|
|
|
convergence_data.to_csv( |
55
|
|
|
"./data/" + optimizer_key + "_convergence_data", index=False |
56
|
|
|
) |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
for opt_key in optimizer_dict.keys(): |
60
|
|
|
create_convergence_data(opt_key) |
61
|
|
|
|