Total Complexity | 1 |
Total Lines | 31 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | |||
6 | from .bayesian_optimization import BayesianOptimizer |
||
7 | from .surrogate_models import EnsembleRegressor |
||
8 | |||
9 | |||
10 | from sklearn.neighbors import KNeighborsRegressor |
||
11 | from sklearn.neural_network import MLPRegressor |
||
12 | from sklearn.tree import DecisionTreeRegressor |
||
13 | from sklearn.ensemble import GradientBoostingRegressor |
||
14 | from sklearn.svm import SVR |
||
15 | from sklearn.gaussian_process import GaussianProcessRegressor |
||
16 | |||
17 | |||
18 | class EnsembleOptimizer(BayesianOptimizer): |
||
19 | def __init__( |
||
20 | self, |
||
21 | search_space, |
||
22 | estimators=[ |
||
23 | GradientBoostingRegressor(n_estimators=10), |
||
24 | SVR(), |
||
25 | DecisionTreeRegressor(), |
||
26 | GaussianProcessRegressor(), |
||
27 | ], |
||
28 | ): |
||
29 | super().__init__(search_space) |
||
30 | self.regr = EnsembleRegressor(estimators) |
||
31 |