1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from sklearn.linear_model import BayesianRidge |
9
|
|
|
from sklearn.gaussian_process import GaussianProcessRegressor |
10
|
|
|
from sklearn.gaussian_process.kernels import Matern, WhiteKernel |
11
|
|
|
from sklearn.ensemble import ExtraTreesRegressor as _ExtraTreesRegressor_ |
12
|
|
|
from sklearn.ensemble import RandomForestRegressor as _RandomForestRegressor_ |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class EnsembleRegressor: |
16
|
|
|
def __init__(self, estimators): |
17
|
|
|
self.estimators = estimators |
18
|
|
|
|
19
|
|
|
def fit(self, X, y): |
20
|
|
|
for estimator in self.estimators: |
21
|
|
|
estimator.fit(X, y) |
22
|
|
|
|
23
|
|
|
def predict(self, X, return_std=False): |
24
|
|
|
predictions = [] |
25
|
|
|
for estimator in self.estimators: |
26
|
|
|
predictions.append(estimator.predict(X)) |
27
|
|
|
|
28
|
|
|
predictions = np.array(predictions).T |
29
|
|
|
mean = predictions.mean(axis=1) |
30
|
|
|
std = predictions.std(axis=1) |
31
|
|
|
|
32
|
|
|
if return_std: |
33
|
|
|
|
34
|
|
|
return mean, std |
35
|
|
|
return mean |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def _return_std(X, trees, predictions, min_variance): |
39
|
|
|
std = np.zeros(len(X)) |
40
|
|
|
|
41
|
|
|
for tree in trees: |
42
|
|
|
var_tree = tree.tree_.impurity[tree.apply(X)] |
43
|
|
|
var_tree[var_tree < min_variance] = min_variance |
44
|
|
|
mean_tree = tree.predict(X) |
45
|
|
|
std += var_tree + mean_tree ** 2 |
46
|
|
|
|
47
|
|
|
std /= len(trees) |
48
|
|
|
std -= predictions ** 2.0 |
49
|
|
|
std[std < 0.0] = 0.0 |
50
|
|
|
std = std ** 0.5 |
51
|
|
|
return std |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
class TreeEnsembleBase: |
55
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
56
|
|
|
self.min_variance = min_variance |
57
|
|
|
super().__init__(**kwargs) |
58
|
|
|
|
59
|
|
|
def fit(self, X, y): |
60
|
|
|
super().fit(X, np.ravel(y)) |
61
|
|
|
|
62
|
|
|
def predict(self, X, return_std=False): |
63
|
|
|
mean = super().predict(X) |
64
|
|
|
|
65
|
|
|
if return_std: |
66
|
|
|
std = _return_std(X, self.estimators_, mean, self.min_variance) |
67
|
|
|
|
68
|
|
|
return mean, std |
69
|
|
|
return mean |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
class RandomForestRegressor(TreeEnsembleBase, _RandomForestRegressor_): |
73
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
74
|
|
|
super().__init__(**kwargs) |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
class ExtraTreesRegressor(TreeEnsembleBase, _ExtraTreesRegressor_): |
78
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
79
|
|
|
super().__init__(**kwargs) |
80
|
|
|
|
81
|
|
|
|
82
|
|
|
class GPR: |
83
|
|
|
def __init__(self): |
84
|
|
|
self.gpr = GaussianProcessRegressor( |
85
|
|
|
kernel=Matern(nu=2.5) + WhiteKernel(), normalize_y=True |
86
|
|
|
) |
87
|
|
|
|
88
|
|
|
def fit(self, X, y): |
89
|
|
|
self.gpr.fit(X, y) |
90
|
|
|
|
91
|
|
|
def predict(self, X, return_std=False): |
92
|
|
|
return self.gpr.predict(X, return_std=return_std) |
93
|
|
|
|
94
|
|
|
|
95
|
|
|
class GPR_linear: |
96
|
|
|
def __init__(self): |
97
|
|
|
self.gpr = BayesianRidge(n_iter=10, normalize=True) |
98
|
|
|
|
99
|
|
|
def fit(self, X, y): |
100
|
|
|
self.gpr.fit(X, y) |
101
|
|
|
|
102
|
|
|
def predict(self, X, return_std=False): |
103
|
|
|
return self.gpr.predict(X, return_std=return_std) |
104
|
|
|
|