Passed
Push — master ( 4ef66c...afb360 )
by Simon
03:52
created

tests.test_optimizers.test_Bayesian   A

Complexity

Total Complexity 4

Size/Duplication

Total Lines 39
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 14
dl 0
loc 39
rs 10
c 0
b 0
f 0
wmc 4

2 Functions

Rating   Name   Duplication   Size   Complexity  
A test_max_sample_size() 0 4 2
A test_skip_retrain() 0 4 2
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
import numpy as np
6
7
from gradient_free_optimizers import BayesianOptimizer
8
from ._base_test import _base_test
9
10
n_iter = 33
11
opt = BayesianOptimizer
12
13
14
def test_skip_retrain():
15
    for skip_retrain in ["many", "some", "few", "never"]:
16
        opt_para = {"skip_retrain": skip_retrain}
17
        _base_test(opt, n_iter, opt_para=opt_para)
18
19
20
"""
21
def test_warm_start_smbo():
22
    gpr_X, gpr_y = [], []
23
    for _ in range(10):
24
        pos = np.random.randint(0, high=9)
25
        pos = np.array([pos])
26
        gpr_X.append(pos)
27
        gpr_y.append(get_score(pos))
28
29
    for warm_start_smbo in [None, (gpr_X, gpr_y)]:
30
        opt_para = {"warm_start_smbo": warm_start_smbo}
31
        _base_test(opt, n_iter, opt_para=opt_para)
32
"""
33
34
35
def test_max_sample_size():
36
    for max_sample_size in [10, 100, 10000, 10000000000]:
37
        opt_para = {"max_sample_size": max_sample_size}
38
        _base_test(opt, n_iter, opt_para=opt_para)
39