Total Complexity | 1 |
Total Lines | 30 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | from gradient_free_optimizers import HillClimbingOptimizer |
||
3 | |||
4 | |||
5 | n_iter = 10 |
||
6 | |||
7 | |||
8 | def get_score(pos_new): |
||
9 | x1 = pos_new[0] |
||
10 | |||
11 | return -x1 * x1 |
||
12 | |||
13 | |||
14 | space_dim = np.array([100]) |
||
15 | init_positions = [np.array([10])] |
||
16 | |||
17 | |||
18 | opt = HillClimbingOptimizer(init_positions, space_dim, opt_para={}) |
||
19 | |||
20 | for nth_init in range(len(init_positions)): |
||
21 | pos_new = opt.init_pos(nth_init) |
||
22 | score_new = get_score(pos_new) |
||
23 | opt.evaluate(score_new) |
||
24 | |||
25 | |||
26 | for nth_iter in range(len(init_positions), n_iter): |
||
27 | pos_new = opt.iterate(nth_iter) |
||
28 | score_new = get_score(pos_new) |
||
29 | opt.evaluate(score_new) |
||
30 |