Passed
Push — master ( 206a80...44bd28 )
by Simon
01:21
created

ExpectedImprovementBasedOptimization.evaluate()   A

Complexity

Conditions 1

Size

Total Lines 7
Code Lines 5

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 5
nop 2
dl 0
loc 7
rs 10
c 0
b 0
f 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
6
import numpy as np
7
from scipy.stats import norm
8
from scipy.spatial.distance import cdist
9
10
11
from .sbom import SBOM
12
13
14
class ExpectedImprovementBasedOptimization(SBOM):
15
    def __init__(self, search_space, xi=0.01, **kwargs):
16
        super().__init__(search_space, **kwargs)
17
        self.new_positions = []
18
        self.xi = xi
19
20
    def _expected_improvement(self):
21
        all_pos_comb_sampled = self.get_random_sample()
22
23
        mu, sigma = self.regr.predict(all_pos_comb_sampled, return_std=True)
24
        mu_sample = self.regr.predict(self.X_sample)
25
26
        mu = mu.reshape(-1, 1)
27
        sigma = sigma.reshape(-1, 1)
28
        mu_sample = mu_sample.reshape(-1, 1)
29
30
        mu_sample_opt = np.max(mu_sample)
31
        imp = mu - mu_sample_opt - self.xi
32
33
        Z = np.divide(imp, sigma, out=np.zeros_like(sigma), where=sigma != 0)
34
        exp_imp = imp * norm.cdf(Z) + sigma * norm.pdf(Z)
35
        exp_imp[sigma == 0.0] = 0.0
36
37
        return exp_imp
38
39
    def _propose_location(self):
40
        self.regr.fit(self.X_sample, self.Y_sample)
41
42
        exp_imp = self._expected_improvement()
43
        exp_imp = exp_imp[:, 0]
44
45
        index_best = list(exp_imp.argsort()[::-1])
46
        all_pos_comb_sorted = self.all_pos_comb[index_best]
47
48
        pos_best = [all_pos_comb_sorted[0]]
49
50
        while len(pos_best) < self.skip_retrain(len(self.pos_new)):
51
            if all_pos_comb_sorted.shape[0] == 0:
52
                break
53
54
            dists = cdist(all_pos_comb_sorted, [pos_best[-1]], metric="cityblock")
55
            dists_norm = dists / dists.max()
56
            bool = np.squeeze(dists_norm > 0.25)
57
            all_pos_comb_sorted = all_pos_comb_sorted[bool]
58
59
            if len(all_pos_comb_sorted) > 0:
60
                pos_best.append(all_pos_comb_sorted[0])
61
62
        return pos_best
63
64
    def iterate(self):
65
        if len(self.new_positions) == 0:
66
            self.new_positions = self._propose_location()
67
68
        pos = self.new_positions[0]
69
        self.pos_new = pos
70
71
        self.new_positions.pop(0)
72
        self.X_sample.append(pos)
73
        self.pos = pos
74
75
        return pos
76
77
    def evaluate(self, score_new):
78
        self.score_new = score_new
79
80
        self._evaluate_new2current(score_new)
81
        self._evaluate_current2best()
82
83
        self.Y_sample.append(score_new)
84