Passed
Push — master ( 836b12...9641c9 )
by Simon
04:52 queued 12s
created

objective_function()   A

Complexity

Conditions 1

Size

Total Lines 3
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 1
dl 0
loc 3
rs 10
c 0
b 0
f 0
1
import time
2
import pytest
3
import numpy as np
4
from sklearn.datasets import load_breast_cancer
5
from sklearn.model_selection import cross_val_score
6
from sklearn.tree import DecisionTreeClassifier
7
8
from ._parametrize import optimizers
9
10
11
def objective_function(para):
12
    score = -para["x1"] * para["x1"]
13
    return score
14
15
16
search_space = {
17
    "x1": np.arange(0, 100, 1),  # small search space because of smbo
18
}
19
20
21
@pytest.mark.parametrize(*optimizers)
22
def test_max_time_0(Optimizer):
23
    c_time1 = time.time()
24
    opt = Optimizer(search_space)
25
    opt.search(objective_function, n_iter=1000000, max_time=0.1)
26
    diff_time1 = time.time() - c_time1
27
28
    assert diff_time1 < 1
29
30
31
@pytest.mark.parametrize(*optimizers)
32
def test_max_time_1(Optimizer):
33
    c_time1 = time.time()
34
    opt = Optimizer(search_space)
35
    opt.search(objective_function, n_iter=1000000, max_time=1)
36
    diff_time1 = time.time() - c_time1
37
38
    assert 0.3 < diff_time1 < 2
39