1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from tqdm import tqdm |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class ProgressBarBase: |
10
|
|
|
def __init__(self, nth_process, n_iter, objective_function): |
11
|
|
|
self._score_best = -np.inf |
12
|
|
|
self.score_best_list = [] |
13
|
|
|
|
14
|
|
|
self.convergence_data = [] |
15
|
|
|
|
16
|
|
|
self._best_since_iter = 0 |
17
|
|
|
self.best_since_iter_list = [] |
18
|
|
|
|
19
|
|
|
self.objective_function = objective_function |
20
|
|
|
|
21
|
|
|
self.n_iter_current = 0 |
22
|
|
|
|
23
|
|
|
@property |
24
|
|
|
def score_best(self): |
25
|
|
|
return self._score_best |
26
|
|
|
|
27
|
|
|
@score_best.setter |
28
|
|
|
def score_best(self, score): |
29
|
|
|
self.score_best_list.append(score) |
30
|
|
|
self._score_best = score |
31
|
|
|
|
32
|
|
|
@property |
33
|
|
|
def best_since_iter(self): |
34
|
|
|
return self._best_since_iter |
35
|
|
|
|
36
|
|
|
@best_since_iter.setter |
37
|
|
|
def best_since_iter(self, nth_iter): |
38
|
|
|
self.best_since_iter_list.append(nth_iter) |
39
|
|
|
self._best_since_iter = nth_iter |
40
|
|
|
|
41
|
|
|
def _new2best(self, score_new, pos_new, nth_iter): |
42
|
|
|
if score_new > self.score_best: |
43
|
|
|
self.score_best = score_new |
44
|
|
|
self.pos_best = pos_new |
45
|
|
|
self.best_since_iter = nth_iter |
46
|
|
|
|
47
|
|
|
self.convergence_data.append(self.score_best) |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
class ProgressBarLVL0(ProgressBarBase): |
51
|
|
|
def __init__(self, nth_process, n_iter, objective_function): |
52
|
|
|
super().__init__(nth_process, n_iter, objective_function) |
53
|
|
|
|
54
|
|
|
def update(self, score_new, pos_new, nth_iter): |
55
|
|
|
self.n_iter_current = nth_iter |
56
|
|
|
self._new2best(score_new, pos_new, nth_iter) |
57
|
|
|
|
58
|
|
|
def close(self): |
59
|
|
|
pass |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
class ProgressBarLVL1(ProgressBarBase): |
63
|
|
|
def __init__(self, nth_process, n_iter, objective_function): |
64
|
|
|
super().__init__(nth_process, n_iter, objective_function) |
65
|
|
|
self._tqdm = tqdm( |
66
|
|
|
**self._tqdm_dict(nth_process, n_iter, objective_function) |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
def update(self, score_new, pos_new, nth_iter): |
70
|
|
|
self.n_iter_current = nth_iter |
71
|
|
|
|
72
|
|
|
self._new2best(score_new, pos_new, nth_iter) |
73
|
|
|
|
74
|
|
|
if score_new > self.score_best: |
75
|
|
|
self._tqdm.set_postfix( |
76
|
|
|
best_score=str(score_new), |
77
|
|
|
best_pos=str(pos_new), |
78
|
|
|
best_iter=str(self._best_since_iter), |
79
|
|
|
) |
80
|
|
|
|
81
|
|
|
self._tqdm.update(1) |
82
|
|
|
# self._tqdm.refresh() |
83
|
|
|
|
84
|
|
|
def close(self): |
85
|
|
|
self._tqdm.close() |
86
|
|
|
|
87
|
|
|
def _tqdm_dict(self, nth_process, n_iter, objective_function): |
88
|
|
|
"""Generates the parameter dict for tqdm in the iteration-loop of each optimizer""" |
89
|
|
|
|
90
|
|
|
self.objective_function = objective_function |
91
|
|
|
|
92
|
|
|
if nth_process is None: |
93
|
|
|
process_str = "" |
94
|
|
|
else: |
95
|
|
|
process_str = "Process " + str(nth_process) |
96
|
|
|
|
97
|
|
|
return { |
98
|
|
|
"total": n_iter, |
99
|
|
|
"desc": process_str, |
100
|
|
|
"position": nth_process, |
101
|
|
|
"leave": False, |
102
|
|
|
# "smoothing": 1.0, |
103
|
|
|
} |
104
|
|
|
|
105
|
|
|
|