Conditions | 2 |
Total Lines | 91 |
Code Lines | 66 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import numpy as np |
||
58 | def plot_search_path( |
||
59 | optimizer_key, |
||
60 | n_iter, |
||
61 | objective_function, |
||
62 | objective_function_np, |
||
63 | search_space, |
||
64 | ): |
||
65 | opt_class, n_inits, random_state = optimizer_dict[optimizer_key] |
||
66 | opt = opt_class(search_space, rand_rest_p=0) |
||
67 | |||
68 | opt.search( |
||
69 | objective_function, |
||
70 | n_iter=n_iter, |
||
71 | random_state=random_state, |
||
72 | memory=False, |
||
73 | verbosity=False, |
||
74 | initialize={"vertices": n_inits}, |
||
75 | ) |
||
76 | |||
77 | conv = Converter(search_space) |
||
78 | |||
79 | plt.figure(figsize=(10, 8)) |
||
80 | plt.set_cmap("jet_r") |
||
81 | |||
82 | x_all, y_all = search_space["x"], search_space["y"] |
||
83 | xi, yi = np.meshgrid(x_all, y_all) |
||
84 | zi = objective_function_np(xi, yi) |
||
85 | |||
86 | plt.imshow( |
||
87 | zi, |
||
88 | alpha=0.15, |
||
89 | # vmin=z.min(), |
||
90 | # vmax=z.max(), |
||
91 | # origin="lower", |
||
92 | extent=[x_all.min(), x_all.max(), y_all.min(), y_all.max()], |
||
93 | ) |
||
94 | |||
95 | # print("\n Results \n", opt.results) |
||
96 | |||
97 | for n, opt_ in enumerate(tqdm(opt.optimizers)): |
||
98 | pos_list = np.array(opt_.pos_new_list) |
||
99 | score_list = np.array(opt_.score_new_list) |
||
100 | |||
101 | values_list = conv.positions2values(pos_list) |
||
102 | values_list = np.array(values_list) |
||
103 | |||
104 | plt.plot( |
||
105 | values_list[:, 0], |
||
106 | values_list[:, 1], |
||
107 | linestyle="--", |
||
108 | marker=",", |
||
109 | color="black", |
||
110 | alpha=0.33, |
||
111 | label=n, |
||
112 | linewidth=0.5, |
||
113 | ) |
||
114 | plt.scatter( |
||
115 | values_list[:, 0], |
||
116 | values_list[:, 1], |
||
117 | c=score_list, |
||
118 | marker="H", |
||
119 | s=15, |
||
120 | vmin=-20000, |
||
121 | vmax=0, |
||
122 | label=n, |
||
123 | edgecolors="black", |
||
124 | linewidth=0.3, |
||
125 | ) |
||
126 | |||
127 | plt.xlabel("x") |
||
128 | plt.ylabel("y") |
||
129 | |||
130 | nth_iteration = "\n\nnth Iteration: " + str(n_iter) |
||
131 | |||
132 | plt.title(optimizer_key + nth_iteration) |
||
133 | |||
134 | plt.xlim((-101, 101)) |
||
135 | plt.ylim((-101, 101)) |
||
136 | plt.colorbar() |
||
137 | # plt.legend(loc="upper left", bbox_to_anchor=(-0.10, 1.2)) |
||
138 | |||
139 | plt.tight_layout() |
||
140 | plt.savefig( |
||
141 | "./_plots/" |
||
142 | + str(opt.__class__.__name__) |
||
143 | + "_" |
||
144 | + "{0:0=2d}".format(n_iter) |
||
145 | + ".jpg", |
||
146 | dpi=300, |
||
147 | ) |
||
148 | plt.close() |
||
149 | |||
179 |