1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
from tqdm import tqdm |
4
|
|
|
import matplotlib.pyplot as plt |
5
|
|
|
|
6
|
|
|
from gradient_free_optimizers import ( |
7
|
|
|
HillClimbingOptimizer, |
8
|
|
|
StochasticHillClimbingOptimizer, |
9
|
|
|
TabuOptimizer, |
10
|
|
|
RandomSearchOptimizer, |
11
|
|
|
RandomRestartHillClimbingOptimizer, |
12
|
|
|
RandomAnnealingOptimizer, |
13
|
|
|
SimulatedAnnealingOptimizer, |
14
|
|
|
ParallelTemperingOptimizer, |
15
|
|
|
ParticleSwarmOptimizer, |
16
|
|
|
EvolutionStrategyOptimizer, |
17
|
|
|
BayesianOptimizer, |
18
|
|
|
TreeStructuredParzenEstimators, |
19
|
|
|
DecisionTreeOptimizer, |
20
|
|
|
EnsembleOptimizer, |
21
|
|
|
) |
22
|
|
|
from gradient_free_optimizers.converter import Converter |
23
|
|
|
|
24
|
|
|
one_init = 1 |
25
|
|
|
two_init = 2 |
26
|
|
|
six_init = 6 |
27
|
|
|
n_inits = 4 |
28
|
|
|
|
29
|
|
|
""" |
30
|
|
|
"Stochastic hill climbing": (StochasticHillClimbingOptimizer, one_init, 0), |
31
|
|
|
"Tabu search": (TabuOptimizer, one_init, 0), |
32
|
|
|
"Random search": (RandomSearchOptimizer, one_init, 1), |
33
|
|
|
"Random restart hill climbing": ( |
34
|
|
|
RandomRestartHillClimbingOptimizer, |
35
|
|
|
one_init, |
36
|
|
|
9, |
37
|
|
|
), |
38
|
|
|
"Random annealing": (RandomAnnealingOptimizer, one_init, 1), |
39
|
|
|
"Simulated annealing": (SimulatedAnnealingOptimizer, one_init, 0), |
40
|
|
|
"Parallel tempering": (ParallelTemperingOptimizer, two_init, 0), |
41
|
|
|
"Particle swarm optimizer": (ParticleSwarmOptimizer, n_inits, 0), |
42
|
|
|
"Evolution strategy": (EvolutionStrategyOptimizer, n_inits, 0), |
43
|
|
|
"Bayesian optimizer": (BayesianOptimizer, six_init, 0), |
44
|
|
|
"Tree structured parzen estimators": ( |
45
|
|
|
TreeStructuredParzenEstimators, |
46
|
|
|
six_init, |
47
|
|
|
0, |
48
|
|
|
), |
49
|
|
|
"Decision tree optimizer": (DecisionTreeOptimizer, six_init, 0), |
50
|
|
|
"Ensemble optimizer": (EnsembleOptimizer, six_init, 0), |
51
|
|
|
""" |
52
|
|
|
|
53
|
|
|
optimizer_dict = { |
54
|
|
|
"Hill climbing": (HillClimbingOptimizer, one_init, 0), |
55
|
|
|
} |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def plot_search_path( |
59
|
|
|
optimizer_key, |
60
|
|
|
n_iter, |
61
|
|
|
objective_function, |
62
|
|
|
objective_function_np, |
63
|
|
|
search_space, |
64
|
|
|
): |
65
|
|
|
opt_class, n_inits, random_state = optimizer_dict[optimizer_key] |
66
|
|
|
opt = opt_class(search_space, rand_rest_p=0) |
67
|
|
|
|
68
|
|
|
opt.search( |
69
|
|
|
objective_function, |
70
|
|
|
n_iter=n_iter, |
71
|
|
|
random_state=random_state, |
72
|
|
|
memory=False, |
73
|
|
|
verbosity=False, |
74
|
|
|
initialize={"vertices": n_inits}, |
75
|
|
|
) |
76
|
|
|
|
77
|
|
|
conv = Converter(search_space) |
78
|
|
|
|
79
|
|
|
plt.figure(figsize=(10, 8)) |
80
|
|
|
plt.set_cmap("jet_r") |
81
|
|
|
|
82
|
|
|
x_all, y_all = search_space["x"], search_space["y"] |
83
|
|
|
xi, yi = np.meshgrid(x_all, y_all) |
84
|
|
|
zi = objective_function_np(xi, yi) |
85
|
|
|
|
86
|
|
|
plt.imshow( |
87
|
|
|
zi, |
88
|
|
|
alpha=0.15, |
89
|
|
|
# vmin=z.min(), |
90
|
|
|
# vmax=z.max(), |
91
|
|
|
# origin="lower", |
92
|
|
|
extent=[x_all.min(), x_all.max(), y_all.min(), y_all.max()], |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
# print("\n Results \n", opt.results) |
96
|
|
|
|
97
|
|
|
for n, opt_ in enumerate(tqdm(opt.optimizers)): |
98
|
|
|
pos_list = np.array(opt_.pos_new_list) |
99
|
|
|
score_list = np.array(opt_.score_new_list) |
100
|
|
|
|
101
|
|
|
values_list = conv.positions2values(pos_list) |
102
|
|
|
values_list = np.array(values_list) |
103
|
|
|
|
104
|
|
|
plt.plot( |
105
|
|
|
values_list[:, 0], |
106
|
|
|
values_list[:, 1], |
107
|
|
|
linestyle="--", |
108
|
|
|
marker=",", |
109
|
|
|
color="black", |
110
|
|
|
alpha=0.33, |
111
|
|
|
label=n, |
112
|
|
|
linewidth=0.5, |
113
|
|
|
) |
114
|
|
|
plt.scatter( |
115
|
|
|
values_list[:, 0], |
116
|
|
|
values_list[:, 1], |
117
|
|
|
c=score_list, |
118
|
|
|
marker="H", |
119
|
|
|
s=15, |
120
|
|
|
vmin=-20000, |
121
|
|
|
vmax=0, |
122
|
|
|
label=n, |
123
|
|
|
edgecolors="black", |
124
|
|
|
linewidth=0.3, |
125
|
|
|
) |
126
|
|
|
|
127
|
|
|
plt.xlabel("x") |
128
|
|
|
plt.ylabel("y") |
129
|
|
|
|
130
|
|
|
nth_iteration = "\n\nnth Iteration: " + str(n_iter) |
131
|
|
|
|
132
|
|
|
plt.title(optimizer_key + nth_iteration) |
133
|
|
|
|
134
|
|
|
plt.xlim((-101, 101)) |
135
|
|
|
plt.ylim((-101, 101)) |
136
|
|
|
plt.colorbar() |
137
|
|
|
# plt.legend(loc="upper left", bbox_to_anchor=(-0.10, 1.2)) |
138
|
|
|
|
139
|
|
|
plt.tight_layout() |
140
|
|
|
plt.savefig( |
141
|
|
|
"./_plots/" |
142
|
|
|
+ str(opt.__class__.__name__) |
143
|
|
|
+ "_" |
144
|
|
|
+ "{0:0=2d}".format(n_iter) |
145
|
|
|
+ ".jpg", |
146
|
|
|
dpi=300, |
147
|
|
|
) |
148
|
|
|
plt.close() |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
# n_iter = 50 |
152
|
|
|
|
153
|
|
|
|
154
|
|
|
def objective_function(pos_new): |
155
|
|
|
score = -(pos_new["x"] * pos_new["x"] + pos_new["y"] * pos_new["y"]) |
156
|
|
|
return score |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
def objective_function_np(x1, x2): |
160
|
|
|
score = -(x1 * x1 + x2 * x2) |
161
|
|
|
return score |
162
|
|
|
|
163
|
|
|
|
164
|
|
|
search_space = {"x": np.arange(-100, 101, 1), "y": np.arange(-100, 101, 1)} |
165
|
|
|
|
166
|
|
|
n_iter_list = range(1, 51) |
167
|
|
|
|
168
|
|
|
for optimizer_key in optimizer_dict.keys(): |
169
|
|
|
print(optimizer_key) |
170
|
|
|
|
171
|
|
|
for n_iter in tqdm(n_iter_list): |
172
|
|
|
plot_search_path( |
173
|
|
|
optimizer_key, |
174
|
|
|
n_iter, |
175
|
|
|
objective_function, |
176
|
|
|
objective_function_np, |
177
|
|
|
search_space, |
178
|
|
|
) |
179
|
|
|
|