1
|
|
|
import os |
2
|
|
|
import glob |
3
|
|
|
|
4
|
|
|
import numpy as np |
5
|
|
|
import pandas as pd |
6
|
|
|
from tqdm import tqdm |
7
|
|
|
import matplotlib.pyplot as plt |
8
|
|
|
|
9
|
|
|
from gradient_free_optimizers.converter import Converter |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
def plot_search_paths( |
13
|
|
|
opt_name, |
14
|
|
|
optimizer, |
15
|
|
|
opt_para, |
16
|
|
|
n_iter_list, |
17
|
|
|
objective_function, |
18
|
|
|
objective_function_np, |
19
|
|
|
search_space, |
20
|
|
|
initialize, |
21
|
|
|
random_state, |
22
|
|
|
): |
23
|
|
|
for n_iter in tqdm(n_iter_list): |
24
|
|
|
opt = optimizer(search_space, **opt_para) |
25
|
|
|
|
26
|
|
|
opt.search( |
27
|
|
|
objective_function, |
28
|
|
|
n_iter=n_iter, |
29
|
|
|
random_state=random_state, |
30
|
|
|
memory=False, |
31
|
|
|
verbosity=False, |
32
|
|
|
initialize=initialize, |
33
|
|
|
) |
34
|
|
|
|
35
|
|
|
conv = Converter(search_space) |
36
|
|
|
|
37
|
|
|
plt.figure(figsize=(10, 8)) |
38
|
|
|
plt.set_cmap("jet_r") |
39
|
|
|
|
40
|
|
|
x_all, y_all = search_space["x"], search_space["y"] |
41
|
|
|
xi, yi = np.meshgrid(x_all, y_all) |
42
|
|
|
zi = objective_function_np(xi, yi) |
43
|
|
|
|
44
|
|
|
plt.imshow( |
45
|
|
|
zi, |
46
|
|
|
alpha=0.15, |
47
|
|
|
# vmin=z.min(), |
48
|
|
|
# vmax=z.max(), |
49
|
|
|
# origin="lower", |
50
|
|
|
extent=[x_all.min(), x_all.max(), y_all.min(), y_all.max()], |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
# print("\n Results \n", opt.results) |
54
|
|
|
|
55
|
|
|
for n, opt_ in enumerate(opt.optimizers): |
56
|
|
|
pos_list = np.array(opt_.pos_new_list) |
57
|
|
|
score_list = np.array(opt_.score_new_list) |
58
|
|
|
|
59
|
|
|
values_list = conv.positions2values(pos_list) |
60
|
|
|
values_list = np.array(values_list) |
61
|
|
|
|
62
|
|
|
plt.plot( |
63
|
|
|
values_list[:, 0], |
64
|
|
|
values_list[:, 1], |
65
|
|
|
linestyle="--", |
66
|
|
|
marker=",", |
67
|
|
|
color="black", |
68
|
|
|
alpha=0.33, |
69
|
|
|
label=n, |
70
|
|
|
linewidth=0.5, |
71
|
|
|
) |
72
|
|
|
plt.scatter( |
73
|
|
|
values_list[:, 0], |
74
|
|
|
values_list[:, 1], |
75
|
|
|
c=score_list, |
76
|
|
|
marker="H", |
77
|
|
|
s=15, |
78
|
|
|
vmin=-20000, |
79
|
|
|
vmax=0, |
80
|
|
|
label=n, |
81
|
|
|
edgecolors="black", |
82
|
|
|
linewidth=0.3, |
83
|
|
|
) |
84
|
|
|
|
85
|
|
|
plt.xlabel("x") |
86
|
|
|
plt.ylabel("y") |
87
|
|
|
|
88
|
|
|
nth_iteration = "\n\nnth Iteration: " + str(n_iter) |
89
|
|
|
|
90
|
|
|
plt.title(opt_name + nth_iteration) |
91
|
|
|
|
92
|
|
|
plt.xlim((-101, 101)) |
93
|
|
|
plt.ylim((-101, 101)) |
94
|
|
|
plt.colorbar() |
95
|
|
|
# plt.legend(loc="upper left", bbox_to_anchor=(-0.10, 1.2)) |
96
|
|
|
|
97
|
|
|
plt.tight_layout() |
98
|
|
|
plt.savefig( |
99
|
|
|
"./_plots/" |
100
|
|
|
+ str(opt.__class__.__name__) |
101
|
|
|
+ "_" |
102
|
|
|
+ "{0:0=3d}".format(n_iter) |
103
|
|
|
+ ".jpg", |
104
|
|
|
dpi=300, |
105
|
|
|
) |
106
|
|
|
plt.close() |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def create_search_path_gif( |
110
|
|
|
opt_name, |
111
|
|
|
optimizer, |
112
|
|
|
opt_para, |
113
|
|
|
n_iter, |
114
|
|
|
objective_function, |
115
|
|
|
objective_function_np, |
116
|
|
|
search_space, |
117
|
|
|
): |
118
|
|
|
pass |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
######################################################################## |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
from gradient_free_optimizers import HillClimbingOptimizer |
125
|
|
|
|
126
|
|
|
optimizer_keys = ["HillClimbingOptimizer"] |
127
|
|
|
n_iter_list = range(1, 51) |
128
|
|
|
|
129
|
|
|
|
130
|
|
|
def get_path(optimizer_key, nth_iteration): |
131
|
|
|
return ( |
132
|
|
|
"./_plots/" |
133
|
|
|
+ str(optimizer_key) |
134
|
|
|
+ "_" |
135
|
|
|
+ "{0:0=2d}".format(nth_iteration) |
136
|
|
|
+ ".jpg" |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
|
140
|
|
|
def objective_function(pos_new): |
141
|
|
|
score = -(pos_new["x"] * pos_new["x"] + pos_new["y"] * pos_new["y"]) |
142
|
|
|
return score |
143
|
|
|
|
144
|
|
|
|
145
|
|
|
def objective_function_np(x1, x2): |
146
|
|
|
score = -(x1 * x1 + x2 * x2) |
147
|
|
|
return score |
148
|
|
|
|
149
|
|
|
|
150
|
|
|
search_space = {"x": np.arange(-100, 101, 1), "y": np.arange(-100, 101, 1)} |
151
|
|
|
|
152
|
|
|
n_iter_list = range(1, 3) |
153
|
|
|
opt_para = {} |
154
|
|
|
initialize = {"vertices": 2} |
155
|
|
|
random_state = 0 |
156
|
|
|
|
157
|
|
|
para_dict = ( |
158
|
|
|
"hill_climbing.gif", |
159
|
|
|
{ |
160
|
|
|
"opt_name": "Hill climbing", |
161
|
|
|
"optimizer": HillClimbingOptimizer, |
162
|
|
|
"opt_para": opt_para, |
163
|
|
|
"n_iter_list": n_iter_list, |
164
|
|
|
"objective_function": objective_function, |
165
|
|
|
"objective_function_np": objective_function_np, |
166
|
|
|
"search_space": search_space, |
167
|
|
|
"initialize": initialize, |
168
|
|
|
"random_state": random_state, |
169
|
|
|
}, |
170
|
|
|
) |
171
|
|
|
|
172
|
|
|
|
173
|
|
|
for _para_dict in tqdm([para_dict]): |
174
|
|
|
plot_search_paths(**_para_dict[1]) |
175
|
|
|
|
176
|
|
|
_framerate = " -framerate 3 " |
177
|
|
|
_input = " -i ./_plots/HillClimbingOptimizer_%03d.jpg " |
178
|
|
|
_scale = " -vf scale=1200:-1 " |
179
|
|
|
_output = " ./_gifs/" + _para_dict[0] |
180
|
|
|
|
181
|
|
|
ffmpeg_command = "ffmpeg -y" + _framerate + _input + _scale + _output |
182
|
|
|
print("\n\n -----> ffmpeg_command \n", ffmpeg_command, "\n\n") |
183
|
|
|
print(_para_dict[0]) |
184
|
|
|
|
185
|
|
|
os.system(ffmpeg_command) |
186
|
|
|
|
187
|
|
|
rm_files = glob.glob("./_plots/*.jpg") |
188
|
|
|
|
189
|
|
|
for f in rm_files: |
190
|
|
|
os.remove(f) |
191
|
|
|
|
192
|
|
|
|