Conditions | 1 |
Total Lines | 23 |
Code Lines | 15 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
1 | from tqdm import tqdm |
||
7 | def create_performance_plots(study_name): |
||
8 | results = pd.read_csv("./_data/" + study_name + ".csv", index_col=0) |
||
9 | |||
10 | total_time = results.loc["total_time_mean"].values |
||
11 | eval_time = results.loc["eval_time_mean"].values |
||
12 | iter_time = results.loc["iter_time_mean"].values |
||
13 | |||
14 | ind = np.arange(total_time.shape[0]) # the x locations for the groups |
||
15 | width = 0.35 # the width of the bars: can also be len(x) sequence |
||
16 | |||
17 | plt.figure(figsize=(15, 5)) |
||
18 | |||
19 | p2 = plt.bar(ind, iter_time, width, bottom=eval_time) |
||
20 | p1 = plt.bar(ind, eval_time, width) |
||
21 | |||
22 | plt.ylabel("Time [s]") |
||
23 | # plt.title(title) |
||
24 | plt.xticks(ind, results.columns, rotation=75) |
||
25 | # plt.yticks() |
||
26 | plt.legend((p1[0], p2[0]), ("Eval time", "Opt time")) |
||
27 | |||
28 | plt.tight_layout() |
||
29 | plt.savefig("./_plots/performance.png", dpi=300) |
||
30 | |||
33 |