1
|
|
|
import time |
2
|
|
|
from tqdm import tqdm |
3
|
|
|
import numpy as np |
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
from gradient_free_optimizers import ( |
7
|
|
|
HillClimbingOptimizer, |
8
|
|
|
StochasticHillClimbingOptimizer, |
9
|
|
|
TabuOptimizer, |
10
|
|
|
RandomSearchOptimizer, |
11
|
|
|
RandomRestartHillClimbingOptimizer, |
12
|
|
|
RandomAnnealingOptimizer, |
13
|
|
|
SimulatedAnnealingOptimizer, |
14
|
|
|
ParallelTemperingOptimizer, |
15
|
|
|
ParticleSwarmOptimizer, |
16
|
|
|
EvolutionStrategyOptimizer, |
17
|
|
|
BayesianOptimizer, |
18
|
|
|
TreeStructuredParzenEstimators, |
19
|
|
|
DecisionTreeOptimizer, |
20
|
|
|
EnsembleOptimizer, |
21
|
|
|
) |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
n_inits = 4 |
25
|
|
|
|
26
|
|
|
optimizer_dict = { |
27
|
|
|
"Hill climbing": HillClimbingOptimizer, |
28
|
|
|
"Stochastic hill climbing": StochasticHillClimbingOptimizer, |
29
|
|
|
"Tabu search": TabuOptimizer, |
30
|
|
|
"Random search": RandomSearchOptimizer, |
31
|
|
|
"Random restart hill climbing": RandomRestartHillClimbingOptimizer, |
32
|
|
|
"Random annealing": RandomAnnealingOptimizer, |
33
|
|
|
"Simulated annealing": SimulatedAnnealingOptimizer, |
34
|
|
|
"Parallel tempering": ParallelTemperingOptimizer, |
35
|
|
|
"Particle swarm optimizer": ParticleSwarmOptimizer, |
36
|
|
|
"Evolution strategy": EvolutionStrategyOptimizer, |
37
|
|
|
# "Bayesian optimizer": BayesianOptimizer, |
38
|
|
|
# "Tree structured parzen estimators": TreeStructuredParzenEstimators, |
39
|
|
|
# "Decision tree optimizer": DecisionTreeOptimizer, |
40
|
|
|
# "Ensemble optimizer": EnsembleOptimizer, |
41
|
|
|
} |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def objective_function(pos_new): |
45
|
|
|
score = -(pos_new["x1"] * pos_new["x1"] + pos_new["x2"] * pos_new["x2"]) |
46
|
|
|
return score |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
search_space = {"x1": np.arange(-10, 11, 0.1), "x2": np.arange(-10, 11, 0.1)} |
50
|
|
|
|
51
|
|
|
runs = 30 |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
def create_performance_data( |
55
|
|
|
study_name, objective_function, search_space, n_iter |
56
|
|
|
): |
57
|
|
|
results = [] |
58
|
|
|
|
59
|
|
|
for opt_name in tqdm(optimizer_dict.keys()): |
60
|
|
|
total_time_list = [] |
61
|
|
|
eval_time_list = [] |
62
|
|
|
iter_time_list = [] |
63
|
|
|
|
64
|
|
|
for random_state in tqdm(range(runs)): |
65
|
|
|
|
66
|
|
|
c_time = time.time() |
67
|
|
|
opt = optimizer_dict[opt_name](search_space) |
68
|
|
|
opt.search( |
69
|
|
|
objective_function, |
70
|
|
|
n_iter=n_iter, |
71
|
|
|
verbosity=False, |
72
|
|
|
random_state=random_state, |
73
|
|
|
) |
74
|
|
|
|
75
|
|
|
total_time = time.time() - c_time |
76
|
|
|
eval_time = np.array(opt.eval_times).sum() |
77
|
|
|
iter_time = np.array(opt.iter_times).sum() |
78
|
|
|
|
79
|
|
|
total_time_list.append(total_time) |
80
|
|
|
eval_time_list.append(eval_time) |
81
|
|
|
iter_time_list.append(iter_time) |
82
|
|
|
|
83
|
|
|
total_time_mean = np.array(total_time_list).mean() |
84
|
|
|
eval_time_mean = np.array(eval_time_list).mean() |
85
|
|
|
iter_time_mean = np.array(iter_time_list).mean() |
86
|
|
|
|
87
|
|
|
total_time_std = np.array(total_time_list).std() |
88
|
|
|
eval_time_std = np.array(eval_time_list).std() |
89
|
|
|
iter_time_std = np.array(iter_time_list).std() |
90
|
|
|
|
91
|
|
|
results.append( |
92
|
|
|
[ |
93
|
|
|
total_time_mean, |
94
|
|
|
total_time_std, |
95
|
|
|
eval_time_mean, |
96
|
|
|
eval_time_std, |
97
|
|
|
iter_time_mean, |
98
|
|
|
iter_time_std, |
99
|
|
|
] |
100
|
|
|
) |
101
|
|
|
|
102
|
|
|
index = [ |
103
|
|
|
"total_time_mean", |
104
|
|
|
"total_time_std", |
105
|
|
|
"eval_time_mean", |
106
|
|
|
"eval_time_std", |
107
|
|
|
"iter_time_mean", |
108
|
|
|
"iter_time_std", |
109
|
|
|
] |
110
|
|
|
columns = list(optimizer_dict.keys()) |
111
|
|
|
|
112
|
|
|
results = np.array(results).T |
113
|
|
|
results = pd.DataFrame(results, columns=columns, index=index) |
114
|
|
|
results.to_csv("./_data/" + study_name + ".csv") |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
create_performance_data( |
118
|
|
|
"simple function", objective_function, search_space, n_iter=50 |
119
|
|
|
) |
120
|
|
|
|
121
|
|
|
|