Conditions | 3 |
Total Lines | 61 |
Code Lines | 46 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import time |
||
54 | def create_performance_data( |
||
55 | study_name, objective_function, search_space, n_iter |
||
56 | ): |
||
57 | results = [] |
||
58 | |||
59 | for opt_name in tqdm(optimizer_dict.keys()): |
||
60 | total_time_list = [] |
||
61 | eval_time_list = [] |
||
62 | iter_time_list = [] |
||
63 | |||
64 | for random_state in tqdm(range(runs)): |
||
65 | |||
66 | c_time = time.time() |
||
67 | opt = optimizer_dict[opt_name](search_space) |
||
68 | opt.search( |
||
69 | objective_function, |
||
70 | n_iter=n_iter, |
||
71 | verbosity=False, |
||
72 | random_state=random_state, |
||
73 | ) |
||
74 | |||
75 | total_time = time.time() - c_time |
||
76 | eval_time = np.array(opt.eval_times).sum() |
||
77 | iter_time = np.array(opt.iter_times).sum() |
||
78 | |||
79 | total_time_list.append(total_time) |
||
80 | eval_time_list.append(eval_time) |
||
81 | iter_time_list.append(iter_time) |
||
82 | |||
83 | total_time_mean = np.array(total_time_list).mean() |
||
84 | eval_time_mean = np.array(eval_time_list).mean() |
||
85 | iter_time_mean = np.array(iter_time_list).mean() |
||
86 | |||
87 | total_time_std = np.array(total_time_list).std() |
||
88 | eval_time_std = np.array(eval_time_list).std() |
||
89 | iter_time_std = np.array(iter_time_list).std() |
||
90 | |||
91 | results.append( |
||
92 | [ |
||
93 | total_time_mean, |
||
94 | total_time_std, |
||
95 | eval_time_mean, |
||
96 | eval_time_std, |
||
97 | iter_time_mean, |
||
98 | iter_time_std, |
||
99 | ] |
||
100 | ) |
||
101 | |||
102 | index = [ |
||
103 | "total_time_mean", |
||
104 | "total_time_std", |
||
105 | "eval_time_mean", |
||
106 | "eval_time_std", |
||
107 | "iter_time_mean", |
||
108 | "iter_time_std", |
||
109 | ] |
||
110 | columns = list(optimizer_dict.keys()) |
||
111 | |||
112 | results = np.array(results).T |
||
113 | results = pd.DataFrame(results, columns=columns, index=index) |
||
114 | results.to_csv("./_data/" + study_name + ".csv") |
||
115 | |||
121 |