Total Complexity | 7 |
Total Lines | 60 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | |||
3 | from gradient_free_optimizers import RandomSearchOptimizer |
||
4 | |||
5 | |||
6 | def objective_function(para): |
||
7 | score = -para["x1"] * para["x1"] |
||
8 | return score |
||
9 | |||
10 | |||
11 | search_space = { |
||
12 | "x1": np.arange(0, 100, 0.1), |
||
13 | } |
||
14 | |||
15 | |||
16 | def test_verbosity_0(): |
||
17 | opt = RandomSearchOptimizer(search_space) |
||
18 | opt.search(objective_function, n_iter=100, verbosity=False) |
||
19 | |||
20 | |||
21 | def test_verbosity_1(): |
||
22 | opt = RandomSearchOptimizer(search_space,) |
||
23 | opt.search( |
||
24 | objective_function, |
||
25 | n_iter=100, |
||
26 | verbosity=["progress_bar", "print_results", "print_times"], |
||
27 | ) |
||
28 | |||
29 | |||
30 | def test_verbosity_2(): |
||
31 | opt = RandomSearchOptimizer(search_space) |
||
32 | opt.search( |
||
33 | objective_function, |
||
34 | n_iter=100, |
||
35 | verbosity=["print_results", "print_times"], |
||
36 | ) |
||
37 | |||
38 | |||
39 | def test_verbosity_3(): |
||
40 | opt = RandomSearchOptimizer(search_space) |
||
41 | opt.search( |
||
42 | objective_function, |
||
43 | n_iter=100, |
||
44 | verbosity=["progress_bar", "print_times"], |
||
45 | ) |
||
46 | |||
47 | |||
48 | def test_verbosity_4(): |
||
49 | opt = RandomSearchOptimizer(search_space) |
||
50 | opt.search( |
||
51 | objective_function, |
||
52 | n_iter=100, |
||
53 | verbosity=["progress_bar", "print_results"], |
||
54 | ) |
||
55 | |||
56 | |||
57 | def test_verbosity_5(): |
||
58 | opt = RandomSearchOptimizer(search_space) |
||
59 | opt.search(objective_function, n_iter=100, verbosity=[]) |
||
60 | |||
61 |