1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import random |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from .base_population_optimizer import BasePopulationOptimizer |
9
|
|
|
from ...search import Search |
10
|
|
|
from ._individual import Individual |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class EvolutionStrategyOptimizer(BasePopulationOptimizer, Search): |
14
|
|
|
def __init__( |
15
|
|
|
self, |
16
|
|
|
search_space, |
17
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
18
|
|
|
mutation_rate=0.7, |
19
|
|
|
crossover_rate=0.3, |
20
|
|
|
rand_rest_p=0.05, |
21
|
|
|
): |
22
|
|
|
super().__init__(search_space, initialize) |
23
|
|
|
|
24
|
|
|
self.mutation_rate = mutation_rate |
25
|
|
|
self.crossover_rate = crossover_rate |
26
|
|
|
self.rand_rest_p = rand_rest_p |
27
|
|
|
|
28
|
|
|
self.individuals = self.optimizers |
29
|
|
|
|
30
|
|
|
def _random_cross(self, array_list): |
31
|
|
|
n_arrays = len(array_list) |
32
|
|
|
size = array_list[0].size |
33
|
|
|
|
34
|
|
|
choice = [True, False] |
35
|
|
|
if size > 2: |
36
|
|
|
add_choice = np.random.randint(n_arrays, size=size - 2).astype(bool) |
37
|
|
|
choice += list(add_choice) |
38
|
|
|
|
39
|
|
|
cross_array = np.choose(choice, array_list) |
40
|
|
|
return cross_array |
41
|
|
|
|
42
|
|
|
def _sort_best(self): |
43
|
|
|
scores_list = [] |
44
|
|
|
for ind in self.individuals: |
45
|
|
|
scores_list.append(ind.score_current) |
46
|
|
|
|
47
|
|
|
scores_np = np.array(scores_list) |
48
|
|
|
idx_sorted_ind = list(scores_np.argsort()[::-1]) |
49
|
|
|
|
50
|
|
|
return [self.individuals[idx] for idx in idx_sorted_ind] |
51
|
|
|
|
52
|
|
|
def _cross(self): |
53
|
|
|
if len(self.individuals) > 2: |
54
|
|
|
rnd_int2 = random.choice( |
55
|
|
|
[i for i in range(0, self.n_ind - 1) if i not in [self.rnd_int]] |
56
|
|
|
) |
57
|
|
|
else: |
58
|
|
|
rnd_int2 = random.choice( |
59
|
|
|
[i for i in range(0, self.n_ind) if i not in [self.rnd_int]] |
60
|
|
|
) |
61
|
|
|
|
62
|
|
|
p_sec = self.ind_sorted[rnd_int2] |
63
|
|
|
p_worst = self.ind_sorted[-1] |
64
|
|
|
|
65
|
|
|
two_best_pos = [self.p_current.pos_current, p_sec.pos_current] |
66
|
|
|
pos_new = self._random_cross(two_best_pos) |
67
|
|
|
|
68
|
|
|
self.p_current = p_worst |
69
|
|
|
p_worst.pos_new = pos_new |
70
|
|
|
|
71
|
|
|
return pos_new |
72
|
|
|
|
73
|
|
|
def init_pos(self, pos): |
74
|
|
|
individual = Individual(self.conv.search_space, rand_rest_p=self.rand_rest_p) |
75
|
|
|
self.individuals.append(individual) |
76
|
|
|
|
77
|
|
|
self.p_current = individual |
78
|
|
|
self.p_current.init_pos(pos) |
79
|
|
|
|
80
|
|
|
def iterate(self): |
81
|
|
|
self.n_ind = len(self.individuals) |
82
|
|
|
|
83
|
|
|
if self.n_ind == 1: |
84
|
|
|
self.p_current = self.individuals[0] |
85
|
|
|
return self.p_current.iterate() |
86
|
|
|
|
87
|
|
|
self.ind_sorted = self._sort_best() |
88
|
|
|
self.rnd_int = random.randint(0, len(self.ind_sorted) - 1) |
89
|
|
|
self.p_current = self.ind_sorted[self.rnd_int] |
90
|
|
|
|
91
|
|
|
total_rate = self.mutation_rate + self.crossover_rate |
92
|
|
|
rand = np.random.uniform(low=0, high=total_rate) |
93
|
|
|
|
94
|
|
|
if rand <= self.mutation_rate: |
95
|
|
|
return self.p_current.iterate() |
96
|
|
|
else: |
97
|
|
|
return self._cross() |
98
|
|
|
|
99
|
|
|
def evaluate(self, score_new): |
100
|
|
|
self.p_current.evaluate(score_new) |
101
|
|
|
|