1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from scipy.stats import norm |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
from .smbo import SMBO |
10
|
|
|
from .surrogate_models import ( |
11
|
|
|
RandomForestRegressor, |
12
|
|
|
ExtraTreesRegressor, |
13
|
|
|
GradientBoostingRegressor, |
14
|
|
|
) |
15
|
|
|
from .acquisition_function import ExpectedImprovement |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
tree_regressor_dict = { |
19
|
|
|
"random_forest": RandomForestRegressor, |
20
|
|
|
"extra_tree": ExtraTreesRegressor, |
21
|
|
|
"gradient_boost": GradientBoostingRegressor, |
22
|
|
|
} |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def normalize(array): |
26
|
|
|
num = array - array.min() |
27
|
|
|
den = array.max() - array.min() |
28
|
|
|
|
29
|
|
|
if den == 0: |
30
|
|
|
return np.random.random_sample(array.shape) |
31
|
|
|
else: |
32
|
|
|
return ((num / den) + 0) / 1 |
33
|
|
|
|
34
|
|
|
|
35
|
|
View Code Duplication |
class ForestOptimizer(SMBO): |
|
|
|
|
36
|
|
|
name = "Forest Optimization" |
37
|
|
|
_name_ = "forest_optimization" |
38
|
|
|
"""Based on the forest-optimizer in the scikit-optimize package""" |
39
|
|
|
|
40
|
|
|
def __init__( |
41
|
|
|
self, |
42
|
|
|
*args, |
43
|
|
|
tree_regressor="extra_tree", |
44
|
|
|
tree_para={"n_estimators": 100}, |
45
|
|
|
xi=0.03, |
46
|
|
|
warm_start_smbo=None, |
47
|
|
|
max_sample_size=10000000, |
48
|
|
|
sampling={"random": 1000000}, |
49
|
|
|
warnings=100000000, |
50
|
|
|
**kwargs |
51
|
|
|
): |
52
|
|
|
super().__init__(*args, **kwargs) |
53
|
|
|
self.tree_regressor = tree_regressor |
54
|
|
|
self.tree_para = tree_para |
55
|
|
|
self.regr = tree_regressor_dict[tree_regressor](**self.tree_para) |
56
|
|
|
self.xi = xi |
57
|
|
|
self.warm_start_smbo = warm_start_smbo |
58
|
|
|
self.max_sample_size = max_sample_size |
59
|
|
|
self.sampling = sampling |
60
|
|
|
self.warnings = warnings |
61
|
|
|
|
62
|
|
|
self.init_warm_start_smbo() |
63
|
|
|
|
64
|
|
|
def _expected_improvement(self): |
65
|
|
|
all_pos_comb = self._all_possible_pos() |
66
|
|
|
self.pos_comb = self._sampling(all_pos_comb) |
67
|
|
|
|
68
|
|
|
acqu_func = ExpectedImprovement(self.regr, self.pos_comb, self.xi) |
69
|
|
|
return acqu_func.calculate(self.X_sample, self.Y_sample) |
70
|
|
|
|
71
|
|
|
def _training(self): |
72
|
|
|
X_sample = np.array(self.X_sample) |
73
|
|
|
Y_sample = np.array(self.Y_sample) |
74
|
|
|
|
75
|
|
|
if len(Y_sample) == 0: |
76
|
|
|
return self.move_random() |
77
|
|
|
|
78
|
|
|
Y_sample = normalize(Y_sample).reshape(-1, 1) |
79
|
|
|
self.regr.fit(X_sample, Y_sample) |
80
|
|
|
|