Conditions | 1 |
Total Lines | 19 |
Code Lines | 12 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
26 | def calculate(self, X_sample, Y_sample): |
||
27 | mu, sigma = self.surrogate_model.predict(self.position_l, return_std=True) |
||
28 | # TODO mu_sample = self.surrogate_model.predict(X_sample) |
||
29 | mu = mu.reshape(-1, 1) |
||
30 | sigma = sigma.reshape(-1, 1) |
||
31 | |||
32 | # with normalization this is always 1 |
||
33 | Y_sample = normalize(np.array(Y_sample)).reshape(-1, 1) |
||
34 | |||
35 | imp = mu - np.max(Y_sample) - self.xi |
||
36 | Z = np.divide(imp, sigma, out=np.zeros_like(sigma), where=sigma != 0) |
||
37 | |||
38 | exploit = imp * norm.cdf(Z) |
||
39 | explore = sigma * norm.pdf(Z) |
||
40 | |||
41 | aqu_func = exploit + explore |
||
42 | aqu_func[sigma == 0.0] = 0.0 |
||
43 | |||
44 | return aqu_func[:, 0] |
||
45 |