1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
|
7
|
|
|
from .progress_bar import ProgressBarLVL0, ProgressBarLVL1 |
8
|
|
|
from .times_tracker import TimesTracker |
9
|
|
|
from .search_statistics import SearchStatistics |
10
|
|
|
from .memory import Memory |
11
|
|
|
from .print_info import print_info |
12
|
|
|
from .stop_run import StopRun |
13
|
|
|
|
14
|
|
|
from .results_manager import ResultsManager |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class Search(TimesTracker, SearchStatistics): |
18
|
|
|
def __init__(self): |
19
|
|
|
super().__init__() |
20
|
|
|
|
21
|
|
|
self.optimizers = [] |
22
|
|
|
self.new_results_list = [] |
23
|
|
|
self.all_results_list = [] |
24
|
|
|
|
25
|
|
|
self.score_l = [] |
26
|
|
|
self.pos_l = [] |
27
|
|
|
self.random_seed = None |
28
|
|
|
|
29
|
|
|
self.results_mang = ResultsManager() |
30
|
|
|
|
31
|
|
|
@TimesTracker.eval_time |
32
|
|
|
def _score(self, pos): |
33
|
|
|
return self.score(pos) |
34
|
|
|
|
35
|
|
|
@TimesTracker.iter_time |
36
|
|
|
def _initialization(self): |
37
|
|
|
self.best_score = self.p_bar.score_best |
38
|
|
|
|
39
|
|
|
init_pos = self.init_pos() |
40
|
|
|
|
41
|
|
|
score_new = self._score(init_pos) |
42
|
|
|
self.evaluate_init(score_new) |
43
|
|
|
|
44
|
|
|
self.pos_l.append(init_pos) |
45
|
|
|
self.score_l.append(score_new) |
46
|
|
|
|
47
|
|
|
self.p_bar.update(score_new, init_pos, self.nth_iter) |
48
|
|
|
|
49
|
|
|
self.n_init_total += 1 |
50
|
|
|
self.n_init_search += 1 |
51
|
|
|
|
52
|
|
|
self.stop.update(self.p_bar.score_best, self.score_l) |
53
|
|
|
|
54
|
|
|
@TimesTracker.iter_time |
55
|
|
|
def _iteration(self): |
56
|
|
|
self.best_score = self.p_bar.score_best |
57
|
|
|
|
58
|
|
|
pos_new = self.iterate() |
59
|
|
|
|
60
|
|
|
score_new = self._score(pos_new) |
61
|
|
|
self.evaluate(score_new) |
62
|
|
|
|
63
|
|
|
self.pos_l.append(pos_new) |
64
|
|
|
self.score_l.append(score_new) |
65
|
|
|
|
66
|
|
|
self.p_bar.update(score_new, pos_new, self.nth_iter) |
67
|
|
|
|
68
|
|
|
self.n_iter_total += 1 |
69
|
|
|
self.n_iter_search += 1 |
70
|
|
|
|
71
|
|
|
self.stop.update(self.p_bar.score_best, self.score_l) |
72
|
|
|
|
73
|
|
|
def search( |
74
|
|
|
self, |
75
|
|
|
objective_function, |
76
|
|
|
n_iter, |
77
|
|
|
max_time=None, |
78
|
|
|
max_score=None, |
79
|
|
|
early_stopping=None, |
80
|
|
|
memory=True, |
81
|
|
|
memory_warm_start=None, |
82
|
|
|
verbosity=["progress_bar", "print_results", "print_times"], |
83
|
|
|
): |
84
|
|
|
self.init_search( |
85
|
|
|
objective_function, |
86
|
|
|
n_iter, |
87
|
|
|
max_time, |
88
|
|
|
max_score, |
89
|
|
|
early_stopping, |
90
|
|
|
memory, |
91
|
|
|
memory_warm_start, |
92
|
|
|
verbosity, |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
for nth_trial in range(n_iter): |
96
|
|
|
self.search_step(nth_trial) |
97
|
|
|
if self.stop.check(): |
98
|
|
|
break |
99
|
|
|
|
100
|
|
|
self.finish_search() |
101
|
|
|
|
102
|
|
|
@SearchStatistics.init_stats |
103
|
|
|
def init_search( |
104
|
|
|
self, |
105
|
|
|
objective_function, |
106
|
|
|
n_iter, |
107
|
|
|
max_time, |
108
|
|
|
max_score, |
109
|
|
|
early_stopping, |
110
|
|
|
memory, |
111
|
|
|
memory_warm_start, |
112
|
|
|
verbosity, |
113
|
|
|
): |
114
|
|
|
self.objective_function = objective_function |
115
|
|
|
self.n_iter = n_iter |
116
|
|
|
self.max_time = max_time |
117
|
|
|
self.max_score = max_score |
118
|
|
|
self.early_stopping = early_stopping |
119
|
|
|
self.memory = memory |
120
|
|
|
self.memory_warm_start = memory_warm_start |
121
|
|
|
self.verbosity = verbosity |
122
|
|
|
|
123
|
|
|
self.results_mang.conv = self.conv |
124
|
|
|
|
125
|
|
|
if self.verbosity is False: |
126
|
|
|
self.verbosity = [] |
127
|
|
|
|
128
|
|
|
start_time = time.time() |
129
|
|
|
self.stop = StopRun( |
130
|
|
|
start_time, self.max_time, self.max_score, self.early_stopping |
131
|
|
|
) |
132
|
|
|
|
133
|
|
|
if "progress_bar" in self.verbosity: |
134
|
|
|
self.p_bar = ProgressBarLVL1( |
135
|
|
|
self.nth_process, self.n_iter, self.objective_function |
136
|
|
|
) |
137
|
|
|
else: |
138
|
|
|
self.p_bar = ProgressBarLVL0( |
139
|
|
|
self.nth_process, self.n_iter, self.objective_function |
140
|
|
|
) |
141
|
|
|
|
142
|
|
|
self.mem = Memory(self.memory_warm_start, self.conv, memory=self.memory) |
143
|
|
|
|
144
|
|
|
if self.memory not in [False, None]: |
145
|
|
|
self.score = self.results_mang.score( |
146
|
|
|
self.mem.memory(self.objective_function) |
147
|
|
|
) |
148
|
|
|
else: |
149
|
|
|
self.score = self.results_mang.score(self.objective_function) |
150
|
|
|
|
151
|
|
|
self.n_inits_norm = min((self.init.n_inits - self.n_init_total), self.n_iter) |
152
|
|
|
|
153
|
|
|
def finish_search(self): |
154
|
|
|
self.search_data = self.results_mang.search_data |
155
|
|
|
|
156
|
|
|
self.best_score = self.p_bar.score_best |
157
|
|
|
self.best_value = self.conv.position2value(self.p_bar.pos_best) |
158
|
|
|
self.best_para = self.conv.value2para(self.best_value) |
159
|
|
|
|
160
|
|
|
if self.memory not in [False, None]: |
161
|
|
|
self.memory_dict = self.mem.memory_dict |
162
|
|
|
else: |
163
|
|
|
self.memory_dict = {} |
164
|
|
|
|
165
|
|
|
self.p_bar.close() |
166
|
|
|
|
167
|
|
|
print_info( |
168
|
|
|
self.verbosity, |
169
|
|
|
self.objective_function, |
170
|
|
|
self.best_score, |
171
|
|
|
self.best_para, |
172
|
|
|
self.eval_times, |
173
|
|
|
self.iter_times, |
174
|
|
|
self.n_iter, |
175
|
|
|
self.random_seed, |
176
|
|
|
) |
177
|
|
|
|
178
|
|
|
def search_step(self, nth_iter): |
179
|
|
|
self.nth_iter = nth_iter |
180
|
|
|
|
181
|
|
|
if self.nth_iter < self.n_inits_norm: |
182
|
|
|
self._initialization() |
183
|
|
|
|
184
|
|
|
if self.nth_iter == self.n_init_search: |
185
|
|
|
self.finish_initialization() |
186
|
|
|
|
187
|
|
|
if self.n_init_search <= self.nth_iter < self.n_iter: |
188
|
|
|
self._iteration() |
189
|
|
|
|