Passed
Push — master ( b0b7f3...e3d174 )
by Simon
04:31
created

deep_learning   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 71
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 51
dl 0
loc 71
rs 10
c 0
b 0
f 0
wmc 1

1 Function

Rating   Name   Duplication   Size   Complexity  
A cnn() 0 38 1
1
from keras.models import Sequential
2
from keras.layers import (
3
    Dense,
4
    Conv2D,
5
    MaxPooling2D,
6
    Flatten,
7
    Dropout,
8
    Activation,
9
)
10
from keras.datasets import cifar10
11
from keras.utils import to_categorical
12
13
from gradient_free_optimizers import BayesianOptimizer
14
15
import numpy as np
16
17
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
18
19
y_train = to_categorical(y_train, 10)
20
y_test = to_categorical(y_test, 10)
21
22
23
def cnn(para):
24
    nn = Sequential()
25
    nn.add(
26
        Conv2D(
27
            para["filter.0"],
28
            (3, 3),
29
            padding="same",
30
            input_shape=X_train.shape[1:],
31
        )
32
    )
33
    nn.add(Activation("relu"))
34
    nn.add(Conv2D(para["filter.0"], (3, 3)))
35
    nn.add(Activation("relu"))
36
    nn.add(MaxPooling2D(pool_size=(2, 2)))
37
    nn.add(Dropout(0.25))
38
39
    nn.add(Conv2D(para["filter.0"], (3, 3), padding="same"))
40
    nn.add(Activation("relu"))
41
    nn.add(Conv2D(para["filter.0"], (3, 3)))
42
    nn.add(Activation("relu"))
43
    nn.add(MaxPooling2D(pool_size=(2, 2)))
44
    nn.add(Dropout(0.25))
45
46
    nn.add(Flatten())
47
    nn.add(Dense(para["dense.0"]))
48
    nn.add(Activation("relu"))
49
    nn.add(Dropout(0.5))
50
    nn.add(Dense(10))
51
    nn.add(Activation("softmax"))
52
53
    nn.compile(
54
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
55
    )
56
    nn.fit(X_train, y_train, epochs=25, batch_size=128)
57
58
    _, score = nn.evaluate(x=X_test, y=y_test)
59
60
    return score
61
62
63
search_space = {
64
    "filter.0": np.array([16, 32, 64, 128]),
65
    "dense.0": np.arange(100, 1000, 100),
66
}
67
68
69
opt = BayesianOptimizer(search_space)
70
opt.search(cnn, n_iter=5)
71