|
1
|
|
|
import pytest |
|
2
|
|
|
from tqdm import tqdm |
|
3
|
|
|
import numpy as np |
|
4
|
|
|
|
|
5
|
|
|
from ._parametrize import ( |
|
6
|
|
|
optimizers_singleOpt, |
|
7
|
|
|
optimizers_PopBased, |
|
8
|
|
|
optimizers_SBOM, |
|
9
|
|
|
) |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_singleOpt) |
|
|
|
|
|
|
13
|
|
|
def test_convex_convergence_singleOpt(Optimizer): |
|
14
|
|
|
def objective_function(para): |
|
15
|
|
|
score = -para["x1"] * para["x1"] |
|
16
|
|
|
return score |
|
17
|
|
|
|
|
18
|
|
|
search_space = {"x1": np.arange(-100, 101, 1)} |
|
19
|
|
|
initialize = {"vertices": 1} |
|
20
|
|
|
|
|
21
|
|
|
n_opts = 33 |
|
22
|
|
|
|
|
23
|
|
|
scores = [] |
|
24
|
|
|
for rnd_st in tqdm(range(n_opts)): |
|
25
|
|
|
opt = Optimizer(search_space) |
|
26
|
|
|
opt.search( |
|
27
|
|
|
objective_function, |
|
28
|
|
|
n_iter=100, |
|
29
|
|
|
random_state=rnd_st, |
|
30
|
|
|
memory=False, |
|
31
|
|
|
verbosity=False, |
|
32
|
|
|
initialize=initialize, |
|
33
|
|
|
) |
|
34
|
|
|
|
|
35
|
|
|
scores.append(opt.best_score) |
|
36
|
|
|
score_mean = np.array(scores).mean() |
|
37
|
|
|
|
|
38
|
|
|
assert score_mean > -25 |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers_PopBased) |
|
|
|
|
|
|
42
|
|
|
def test_convex_convergence_popBased(Optimizer): |
|
43
|
|
|
def objective_function(para): |
|
44
|
|
|
score = -para["x1"] * para["x1"] |
|
45
|
|
|
return score |
|
46
|
|
|
|
|
47
|
|
|
search_space = {"x1": np.arange(-100, 101, 1)} |
|
48
|
|
|
initialize = {"vertices": 2, "grid": 2} |
|
49
|
|
|
|
|
50
|
|
|
n_opts = 33 |
|
51
|
|
|
|
|
52
|
|
|
scores = [] |
|
53
|
|
|
for rnd_st in tqdm(range(n_opts)): |
|
54
|
|
|
opt = Optimizer(search_space) |
|
55
|
|
|
opt.search( |
|
56
|
|
|
objective_function, |
|
57
|
|
|
n_iter=80, |
|
58
|
|
|
random_state=rnd_st, |
|
59
|
|
|
memory=False, |
|
60
|
|
|
verbosity=False, |
|
61
|
|
|
initialize=initialize, |
|
62
|
|
|
) |
|
63
|
|
|
|
|
64
|
|
|
scores.append(opt.best_score) |
|
65
|
|
|
score_mean = np.array(scores).mean() |
|
66
|
|
|
|
|
67
|
|
|
assert score_mean > -25 |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
@pytest.mark.parametrize(*optimizers_SBOM) |
|
71
|
|
|
def test_convex_convergence_SBOM(Optimizer): |
|
72
|
|
|
def objective_function(para): |
|
73
|
|
|
score = -para["x1"] * para["x1"] |
|
74
|
|
|
return score |
|
75
|
|
|
|
|
76
|
|
|
search_space = {"x1": np.arange(-33, 33, 1)} |
|
77
|
|
|
initialize = {"vertices": 2} |
|
78
|
|
|
|
|
79
|
|
|
n_opts = 10 |
|
80
|
|
|
|
|
81
|
|
|
scores = [] |
|
82
|
|
|
for rnd_st in tqdm(range(n_opts)): |
|
83
|
|
|
opt = Optimizer(search_space) |
|
84
|
|
|
opt.search( |
|
85
|
|
|
objective_function, |
|
86
|
|
|
n_iter=30, |
|
87
|
|
|
random_state=rnd_st, |
|
88
|
|
|
memory=False, |
|
89
|
|
|
verbosity=False, |
|
90
|
|
|
initialize=initialize, |
|
91
|
|
|
) |
|
92
|
|
|
|
|
93
|
|
|
scores.append(opt.best_score) |
|
94
|
|
|
score_mean = np.array(scores).mean() |
|
95
|
|
|
|
|
96
|
|
|
print("scores", scores) |
|
97
|
|
|
|
|
98
|
|
|
print("score_mean", score_mean) |
|
99
|
|
|
assert score_mean > -25 |
|
100
|
|
|
# assert False |
|
101
|
|
|
|
|
102
|
|
|
|