|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import time |
|
6
|
|
|
import random |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import pandas as pd |
|
10
|
|
|
|
|
11
|
|
|
from .init_positions import Initializer |
|
12
|
|
|
from .progress_bar import ProgressBarLVL0, ProgressBarLVL1 |
|
13
|
|
|
from .times_tracker import TimesTracker |
|
14
|
|
|
from .results_manager import ResultsManager |
|
15
|
|
|
from .memory import Memory |
|
16
|
|
|
from .converter import Converter |
|
17
|
|
|
from .print_info import print_info |
|
18
|
|
|
|
|
19
|
|
|
p_bar_dict = { |
|
20
|
|
|
False: ProgressBarLVL0, |
|
21
|
|
|
True: ProgressBarLVL1, |
|
22
|
|
|
} |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
def time_exceeded(start_time, max_time): |
|
26
|
|
|
run_time = time.time() - start_time |
|
27
|
|
|
return max_time and run_time > max_time |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
def score_exceeded(score_best, max_score): |
|
31
|
|
|
return max_score and score_best >= max_score |
|
32
|
|
|
|
|
33
|
|
|
|
|
34
|
|
|
def set_random_seed(nth_process, random_state): |
|
35
|
|
|
""" |
|
36
|
|
|
Sets the random seed separately for each thread |
|
37
|
|
|
(to avoid getting the same results in each thread) |
|
38
|
|
|
""" |
|
39
|
|
|
if nth_process is None: |
|
40
|
|
|
nth_process = 0 |
|
41
|
|
|
|
|
42
|
|
|
if random_state is None: |
|
43
|
|
|
random_state = np.random.randint(0, high=2 ** 32 - 2) |
|
44
|
|
|
|
|
45
|
|
|
random.seed(random_state + nth_process) |
|
46
|
|
|
np.random.seed(random_state + nth_process) |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
class Search(TimesTracker): |
|
50
|
|
|
def __init__(self): |
|
51
|
|
|
super().__init__() |
|
52
|
|
|
|
|
53
|
|
|
self.optimizers = [] |
|
54
|
|
|
self.new_results_list = [] |
|
55
|
|
|
self.all_results_list = [] |
|
56
|
|
|
|
|
57
|
|
|
@TimesTracker.eval_time |
|
58
|
|
|
def _score(self, pos): |
|
59
|
|
|
return self.score(pos) |
|
60
|
|
|
|
|
61
|
|
|
def _init_memory(self, memory): |
|
62
|
|
|
memory_warm_start = self.memory_warm_start |
|
63
|
|
|
|
|
64
|
|
|
self.memory_dict = {} |
|
65
|
|
|
self.memory_dict_new = {} |
|
66
|
|
|
|
|
67
|
|
|
if isinstance(memory_warm_start, pd.DataFrame): |
|
68
|
|
|
parameter = set(self.search_space.keys()) |
|
69
|
|
|
memory_para = set(memory_warm_start.columns) |
|
70
|
|
|
|
|
71
|
|
|
if parameter <= memory_para: |
|
72
|
|
|
values_list = list( |
|
73
|
|
|
memory_warm_start[list(self.search_space.keys())].values |
|
74
|
|
|
) |
|
75
|
|
|
scores = memory_warm_start["score"] |
|
76
|
|
|
|
|
77
|
|
|
value_tuple_list = list(map(tuple, values_list)) |
|
78
|
|
|
self.memory_dict = dict(zip(value_tuple_list, scores)) |
|
79
|
|
|
else: |
|
80
|
|
|
missing = parameter - memory_para |
|
81
|
|
|
|
|
82
|
|
|
print( |
|
83
|
|
|
"\nWarning:", |
|
84
|
|
|
'"{}"'.format(*missing), |
|
85
|
|
|
"is in search_space but not in memory dataframe", |
|
86
|
|
|
) |
|
87
|
|
|
print( |
|
88
|
|
|
"Optimization run will continue " |
|
89
|
|
|
"without memory warm start\n" |
|
90
|
|
|
) |
|
91
|
|
|
|
|
92
|
|
|
@TimesTracker.iter_time |
|
93
|
|
|
def _initialization(self, init_pos): |
|
94
|
|
|
self.init_pos(init_pos) |
|
95
|
|
|
|
|
96
|
|
|
score_new = self._score(init_pos) |
|
97
|
|
|
self.evaluate(score_new) |
|
98
|
|
|
|
|
99
|
|
|
self.p_bar.update(score_new, init_pos) |
|
100
|
|
|
|
|
101
|
|
|
@TimesTracker.iter_time |
|
102
|
|
|
def _iteration(self): |
|
103
|
|
|
pos_new = self.iterate() |
|
104
|
|
|
|
|
105
|
|
|
score_new = self._score(pos_new) |
|
106
|
|
|
self.evaluate(score_new) |
|
107
|
|
|
|
|
108
|
|
|
self.p_bar.update(score_new, pos_new) |
|
109
|
|
|
|
|
110
|
|
|
def _init_search(self): |
|
111
|
|
|
self._init_memory(self.memory) |
|
112
|
|
|
self.p_bar = p_bar_dict[self.progress_bar]( |
|
113
|
|
|
self.nth_process, self.n_iter, self.objective_function |
|
114
|
|
|
) |
|
115
|
|
|
set_random_seed(self.nth_process, self.random_state) |
|
116
|
|
|
|
|
117
|
|
|
if self.warm_start is not None: |
|
118
|
|
|
self.initialize["warm_start"] = self.warm_start |
|
119
|
|
|
|
|
120
|
|
|
# get init positions |
|
121
|
|
|
init = Initializer(self.conv) |
|
122
|
|
|
init_positions = init.set_pos(self.initialize) |
|
123
|
|
|
|
|
124
|
|
|
return init_positions |
|
125
|
|
|
|
|
126
|
|
|
def _early_stop(self): |
|
127
|
|
|
if time_exceeded(self.start_time, self.max_time): |
|
128
|
|
|
return True |
|
129
|
|
|
elif score_exceeded(self.p_bar.score_best, self.max_score): |
|
130
|
|
|
return True |
|
131
|
|
|
else: |
|
132
|
|
|
return False |
|
133
|
|
|
|
|
134
|
|
|
def _init_verb_dict(self, verb_dict): |
|
135
|
|
|
if verb_dict in [None, False]: |
|
136
|
|
|
return { |
|
137
|
|
|
"progress_bar": False, |
|
138
|
|
|
"print_results": False, |
|
139
|
|
|
"print_times": False, |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
verb_default = { |
|
143
|
|
|
"progress_bar": True, |
|
144
|
|
|
"print_results": True, |
|
145
|
|
|
"print_times": True, |
|
146
|
|
|
} |
|
147
|
|
|
|
|
148
|
|
|
for verb_key in verb_default.keys(): |
|
149
|
|
|
if verb_key not in verb_dict: |
|
150
|
|
|
verb_dict[verb_key] = verb_default[verb_key] |
|
151
|
|
|
|
|
152
|
|
|
return verb_dict |
|
153
|
|
|
|
|
154
|
|
|
def search( |
|
155
|
|
|
self, |
|
156
|
|
|
objective_function, |
|
157
|
|
|
n_iter, |
|
158
|
|
|
initialize={"grid": 8, "random": 4, "vertices": 8}, |
|
159
|
|
|
warm_start=None, |
|
160
|
|
|
max_time=None, |
|
161
|
|
|
max_score=None, |
|
162
|
|
|
memory=True, |
|
163
|
|
|
memory_warm_start=None, |
|
164
|
|
|
verbosity={ |
|
165
|
|
|
"progress_bar": True, |
|
166
|
|
|
"print_results": True, |
|
167
|
|
|
"print_times": True, |
|
168
|
|
|
}, |
|
169
|
|
|
random_state=None, |
|
170
|
|
|
nth_process=None, |
|
171
|
|
|
): |
|
172
|
|
|
self.start_time = time.time() |
|
173
|
|
|
|
|
174
|
|
|
verbosity = self._init_verb_dict(verbosity) |
|
175
|
|
|
|
|
176
|
|
|
self.objective_function = objective_function |
|
177
|
|
|
self.n_iter = n_iter |
|
178
|
|
|
self.initialize = initialize |
|
179
|
|
|
self.warm_start = warm_start |
|
180
|
|
|
self.max_time = max_time |
|
181
|
|
|
self.max_score = max_score |
|
182
|
|
|
self.memory = memory |
|
183
|
|
|
self.memory_warm_start = memory_warm_start |
|
184
|
|
|
self.progress_bar = verbosity["progress_bar"] |
|
185
|
|
|
self.random_state = random_state |
|
186
|
|
|
self.nth_process = nth_process |
|
187
|
|
|
|
|
188
|
|
|
conv = Converter(self.search_space) |
|
189
|
|
|
self.conv = conv |
|
190
|
|
|
results = ResultsManager(objective_function, conv) |
|
191
|
|
|
init_positions = self._init_search() |
|
192
|
|
|
|
|
193
|
|
|
if memory is True: |
|
194
|
|
|
mem = Memory(memory_warm_start, conv) |
|
195
|
|
|
self.score = mem.memory(results.score) |
|
196
|
|
|
else: |
|
197
|
|
|
self.score = results.score |
|
198
|
|
|
|
|
199
|
|
|
# loop to initialize N positions |
|
200
|
|
|
for init_pos, nth_iter in zip(init_positions, range(n_iter)): |
|
201
|
|
|
if self._early_stop(): |
|
202
|
|
|
break |
|
203
|
|
|
self._initialization(init_pos) |
|
204
|
|
|
|
|
205
|
|
|
# loop to do the iterations |
|
206
|
|
|
for nth_iter in range(len(init_positions), n_iter): |
|
207
|
|
|
if self._early_stop(): |
|
208
|
|
|
break |
|
209
|
|
|
self._iteration() |
|
210
|
|
|
|
|
211
|
|
|
self.results = pd.DataFrame(results.results_list) |
|
212
|
|
|
|
|
213
|
|
|
self.best_score = self.p_bar.score_best |
|
214
|
|
|
self.best_value = conv.position2value(self.p_bar.pos_best) |
|
215
|
|
|
self.best_para = conv.value2para(self.best_value) |
|
216
|
|
|
|
|
217
|
|
|
eval_time = np.array(self.eval_times).sum() |
|
218
|
|
|
iter_time = np.array(self.iter_times).sum() |
|
219
|
|
|
|
|
220
|
|
|
self.p_bar.close() |
|
221
|
|
|
|
|
222
|
|
|
print_info( |
|
223
|
|
|
verbosity, |
|
224
|
|
|
self.objective_function, |
|
225
|
|
|
self.best_score, |
|
226
|
|
|
self.best_para, |
|
227
|
|
|
eval_time, |
|
228
|
|
|
iter_time, |
|
229
|
|
|
self.n_iter, |
|
230
|
|
|
) |
|
231
|
|
|
|
|
232
|
|
|
|