1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from ..base_optimizer import BaseOptimizer |
7
|
|
|
from ...search import Search |
8
|
|
|
from .sampling import InitialSampler |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
from itertools import compress |
12
|
|
|
|
13
|
|
|
np.seterr(divide="ignore", invalid="ignore") |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class SMBO(BaseOptimizer, Search): |
17
|
|
|
def __init__( |
18
|
|
|
self, |
19
|
|
|
search_space, |
20
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
21
|
|
|
warm_start_smbo=None, |
22
|
|
|
init_sample_size=10000000, |
23
|
|
|
sampling={"random": 1000000}, |
24
|
|
|
warnings=100000000, |
25
|
|
|
): |
26
|
|
|
super().__init__(search_space, initialize) |
27
|
|
|
self.warm_start_smbo = warm_start_smbo |
28
|
|
|
self.sampling = sampling |
29
|
|
|
self.warnings = warnings |
30
|
|
|
|
31
|
|
|
self.sampler = InitialSampler(self.conv, init_sample_size) |
32
|
|
|
|
33
|
|
|
if self.warnings: |
34
|
|
|
self.memory_warning(init_sample_size) |
35
|
|
|
|
36
|
|
|
def init_position_combinations(self): |
37
|
|
|
self.X_sample = [] |
38
|
|
|
self.Y_sample = [] |
39
|
|
|
|
40
|
|
|
def init_warm_start_smbo(self): |
41
|
|
|
if self.warm_start_smbo is not None: |
42
|
|
|
# filter out nan and inf |
43
|
|
|
warm_start_smbo = self.warm_start_smbo[ |
44
|
|
|
~self.warm_start_smbo.isin([np.nan, np.inf, -np.inf]).any(1) |
45
|
|
|
] |
46
|
|
|
|
47
|
|
|
X_sample_values = warm_start_smbo[self.conv.para_names].values |
48
|
|
|
Y_sample = warm_start_smbo["score"].values |
49
|
|
|
|
50
|
|
|
self.X_sample = self.conv.values2positions(X_sample_values) |
51
|
|
|
self.Y_sample = list(Y_sample) |
52
|
|
|
|
53
|
|
|
def track_X_sample(func): |
54
|
|
|
def wrapper(self, *args, **kwargs): |
55
|
|
|
pos = func(self, *args, **kwargs) |
56
|
|
|
self.X_sample.append(pos) |
57
|
|
|
return pos |
58
|
|
|
|
59
|
|
|
return wrapper |
60
|
|
|
|
61
|
|
|
def _sampling(self, all_pos_comb): |
62
|
|
|
if self.sampling is False: |
63
|
|
|
return all_pos_comb |
64
|
|
|
elif "random" in self.sampling: |
65
|
|
|
return self.random_sampling(all_pos_comb) |
66
|
|
|
|
67
|
|
|
def random_sampling(self, pos_comb): |
68
|
|
|
n_samples = self.sampling["random"] |
69
|
|
|
n_pos_comb = pos_comb.shape[0] |
70
|
|
|
|
71
|
|
|
if n_pos_comb <= n_samples: |
72
|
|
|
return pos_comb |
73
|
|
|
else: |
74
|
|
|
_idx_sample = np.random.choice(n_pos_comb, n_samples, replace=False) |
75
|
|
|
pos_comb_sampled = pos_comb[_idx_sample, :] |
76
|
|
|
return pos_comb_sampled |
77
|
|
|
|
78
|
|
|
def _all_possible_pos(self): |
79
|
|
|
pos_space = self.sampler.get_pos_space() |
80
|
|
|
# print("pos_space", pos_space) |
81
|
|
|
n_dim = len(pos_space) |
82
|
|
|
return np.array(np.meshgrid(*pos_space)).T.reshape(-1, n_dim) |
83
|
|
|
|
84
|
|
|
def memory_warning(self, init_sample_size): |
85
|
|
|
if ( |
86
|
|
|
self.conv.search_space_size > self.warnings |
87
|
|
|
and init_sample_size > self.warnings |
88
|
|
|
): |
89
|
|
|
warning_message0 = "\n Warning:" |
90
|
|
|
warning_message1 = ( |
91
|
|
|
"\n search space size of " |
92
|
|
|
+ str(self.conv.search_space_size) |
93
|
|
|
+ " exceeding recommended limit." |
94
|
|
|
) |
95
|
|
|
warning_message3 = "\n Reduce search space size for better performance." |
96
|
|
|
print(warning_message0 + warning_message1 + warning_message3) |
97
|
|
|
|
98
|
|
|
@track_X_sample |
99
|
|
|
def init_pos(self, pos): |
100
|
|
|
super().init_pos(pos) |
101
|
|
|
return pos |
102
|
|
|
|