| Total Complexity | 4 |
| Total Lines | 73 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 2 | import random |
||
| 3 | import numpy as np |
||
| 4 | |||
| 5 | from gradient_free_optimizers.optimizers.core_optimizer.converter import Converter |
||
| 6 | |||
| 7 | from ._parametrize import optimizers |
||
| 8 | |||
| 9 | |||
| 10 | def objective_function(para): |
||
| 11 | return -(para["x1"] + para["x1"]) |
||
| 12 | |||
| 13 | |||
| 14 | search_space1 = { |
||
| 15 | "x1": np.array([1]), |
||
| 16 | "x2": np.arange(-10, 10, 1), |
||
| 17 | } |
||
| 18 | |||
| 19 | search_space2 = { |
||
| 20 | "x1": np.arange(-10, 10, 1), |
||
| 21 | "x2": np.array([1]), |
||
| 22 | } |
||
| 23 | |||
| 24 | search_space3 = { |
||
| 25 | "x1": np.arange(-10, 10, 1), |
||
| 26 | "x2": np.array([1]), |
||
| 27 | "x3": np.array([1]), |
||
| 28 | } |
||
| 29 | |||
| 30 | search_space4 = { |
||
| 31 | "x1": np.arange(-10, 10, 1), |
||
| 32 | "x2": np.array([1]), |
||
| 33 | "x3": np.array([1]), |
||
| 34 | "x4": np.array([1]), |
||
| 35 | } |
||
| 36 | |||
| 37 | |||
| 38 | objective_para = ( |
||
| 39 | "search_space", |
||
| 40 | [ |
||
| 41 | (search_space1), |
||
| 42 | (search_space2), |
||
| 43 | (search_space3), |
||
| 44 | (search_space4), |
||
| 45 | ], |
||
| 46 | ) |
||
| 47 | |||
| 48 | |||
| 49 | @pytest.mark.parametrize(*objective_para) |
||
| 50 | @pytest.mark.parametrize(*optimizers) |
||
| 51 | def test_backend_api_0(Optimizer, search_space): |
||
| 52 | opt = Optimizer(search_space) |
||
| 53 | |||
| 54 | conv = Converter(search_space) |
||
| 55 | |||
| 56 | n_inits = len(opt.init.init_positions_l) |
||
| 57 | |||
| 58 | for _ in range(n_inits): |
||
| 59 | pos = opt.init_pos() |
||
| 60 | value = conv.position2value(pos) |
||
| 61 | para = conv.value2para(value) |
||
| 62 | score = objective_function(para) |
||
| 63 | opt.evaluate(score) |
||
| 64 | |||
| 65 | opt.finish_initialization() |
||
| 66 | |||
| 67 | for _ in range(20): |
||
| 68 | pos = opt.iterate() |
||
| 69 | value = conv.position2value(pos) |
||
| 70 | para = conv.value2para(value) |
||
| 71 | score = objective_function(para) |
||
| 72 | opt.evaluate(score) |
||
| 73 |