1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import random |
6
|
|
|
import numpy as np |
7
|
|
|
from scipy.spatial.distance import cdist |
8
|
|
|
|
9
|
|
|
from ..smb_opt.smbo import SMBO |
10
|
|
|
from ...search import Search |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class SubSpace: |
14
|
|
|
def __init__(self, search_space): |
15
|
|
|
self.search_space = search_space |
16
|
|
|
|
17
|
|
|
self.score = None |
18
|
|
|
self.center_pos = self.center_pos_() |
19
|
|
|
self.biggest_dim = self.biggest_dim_() |
20
|
|
|
|
21
|
|
|
def center_pos_(self): |
22
|
|
|
center_pos = [] |
23
|
|
|
|
24
|
|
|
for dim in list(self.search_space.keys()): |
25
|
|
|
dim_array = self.search_space[dim] |
26
|
|
|
array_size = dim_array.shape[0] |
27
|
|
|
center_idx = int(array_size / 2) |
28
|
|
|
|
29
|
|
|
center_pos.append(dim_array[center_idx]) |
30
|
|
|
|
31
|
|
|
return np.array(center_pos).astype(int) |
32
|
|
|
|
33
|
|
|
def biggest_dim_(self): |
34
|
|
|
largest_dim = None |
35
|
|
|
largest_size = 0 |
36
|
|
|
|
37
|
|
|
for dim in list(self.search_space.keys()): |
38
|
|
|
dim_array = self.search_space[dim] |
39
|
|
|
array_size = dim_array.shape[0] |
40
|
|
|
|
41
|
|
|
if array_size == largest_size: |
42
|
|
|
if random.randint(0, 1): |
43
|
|
|
largest_size = array_size |
44
|
|
|
largest_dim = dim |
45
|
|
|
|
46
|
|
|
elif array_size > largest_size: |
47
|
|
|
largest_size = array_size |
48
|
|
|
largest_dim = dim |
49
|
|
|
|
50
|
|
|
return largest_dim |
51
|
|
|
|
52
|
|
|
def lipschitz_bound_(self, score, K=1): |
53
|
|
|
self.score = score |
54
|
|
|
|
55
|
|
|
furthest_pos_ = [] |
56
|
|
|
|
57
|
|
|
for dim in list(self.search_space.keys()): |
58
|
|
|
dim_array = self.search_space[dim] |
59
|
|
|
furthest_pos_.append(dim_array[0]) |
60
|
|
|
furthest_pos = np.array(furthest_pos_) |
61
|
|
|
|
62
|
|
|
dist = cdist(furthest_pos.reshape(1, -1), self.center_pos.reshape(1, -1)) |
63
|
|
|
|
64
|
|
|
self.lipschitz_bound = score + K * dist |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
class DirectAlgorithm(SMBO, Search): |
68
|
|
|
name = "Direct Algorithm" |
69
|
|
|
_name_ = "direct_algorithm" |
70
|
|
|
|
71
|
|
|
def __init__(self, *args, **kwargs): |
72
|
|
|
super().__init__(*args, **kwargs) |
73
|
|
|
self.subspace_l = [] |
74
|
|
|
|
75
|
|
|
def select_next_subspace(self): |
76
|
|
|
for subspace in self.subspace_l: |
77
|
|
|
if subspace.score is None: |
78
|
|
|
return subspace |
79
|
|
|
|
80
|
|
|
def split_dim_into_n(self, subspace, n_splits=3): |
81
|
|
|
search_space = subspace.search_space |
82
|
|
|
dim_array = search_space[subspace.biggest_dim] |
83
|
|
|
|
84
|
|
|
sub_arrays = np.array_split(dim_array, n_splits) |
85
|
|
|
|
86
|
|
|
sub_search_space_l = [] |
87
|
|
|
for sub_array in sub_arrays: |
88
|
|
|
sub_search_space_ = dict(search_space) |
89
|
|
|
sub_search_space_[subspace.biggest_dim] = sub_array |
90
|
|
|
|
91
|
|
|
sub_search_space_l.append(sub_search_space_) |
92
|
|
|
|
93
|
|
|
for search_space_ in sub_search_space_l: |
94
|
|
|
try: |
95
|
|
|
self.subspace_l.append(SubSpace(search_space_)) |
96
|
|
|
except IndexError: |
97
|
|
|
pass |
98
|
|
|
|
99
|
|
|
self.subspace_l.remove(subspace) |
100
|
|
|
|
101
|
|
|
def select_subspace(self): |
102
|
|
|
lipschitz_bound_max = -np.inf |
103
|
|
|
next_subspace = None |
104
|
|
|
|
105
|
|
|
for subspace in self.subspace_l: |
106
|
|
|
if subspace.lipschitz_bound > lipschitz_bound_max: |
107
|
|
|
lipschitz_bound_max = subspace.lipschitz_bound |
108
|
|
|
next_subspace = subspace |
109
|
|
|
|
110
|
|
|
# if lipschitz_bound is nan or -inf |
111
|
|
|
if next_subspace is None: |
112
|
|
|
next_subspace = self.subspace_l[0] |
113
|
|
|
|
114
|
|
|
return next_subspace |
115
|
|
|
|
116
|
|
|
def finish_initialization(self): |
117
|
|
|
subspace = SubSpace(self.conv.pos_space) |
118
|
|
|
self.subspace_l.append(subspace) |
119
|
|
|
self.search_state = "iter" |
120
|
|
|
|
121
|
|
|
@SMBO.track_new_pos |
122
|
|
|
@SMBO.track_X_sample |
123
|
|
|
def iterate(self): |
124
|
|
|
self.current_subspace = self.select_next_subspace() |
125
|
|
|
if self.current_subspace: |
126
|
|
|
return self.current_subspace.center_pos |
127
|
|
|
|
128
|
|
|
else: |
129
|
|
|
self.current_subspace = self.select_subspace() |
130
|
|
|
self.split_dim_into_n(self.current_subspace) |
131
|
|
|
|
132
|
|
|
return self.subspace_l[-1].center_pos |
133
|
|
|
|
134
|
|
|
@SMBO.track_new_score |
135
|
|
|
def evaluate(self, score_new): |
136
|
|
|
if self.pos_best is None: |
137
|
|
|
self.pos_best = self.pos_new |
138
|
|
|
self.pos_current = self.pos_new |
139
|
|
|
|
140
|
|
|
self.score_best = score_new |
141
|
|
|
self.score_current = score_new |
142
|
|
|
|
143
|
|
|
if self.search_state == "iter": |
144
|
|
|
self.current_subspace.lipschitz_bound_(score_new) |
145
|
|
|
|