1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
from functools import reduce |
9
|
|
|
from typing import Optional |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
class Converter: |
13
|
|
|
def __init__(self, search_space: dict) -> None: |
14
|
|
|
self.n_dimensions = len(search_space) |
15
|
|
|
self.search_space = search_space |
16
|
|
|
self.para_names = list(search_space.keys()) |
17
|
|
|
|
18
|
|
|
dim_sizes_list = [len(array) for array in search_space.values()] |
19
|
|
|
self.dim_sizes = np.array(dim_sizes_list) |
20
|
|
|
|
21
|
|
|
# product of list |
22
|
|
|
self.search_space_size = reduce((lambda x, y: x * y), dim_sizes_list) |
23
|
|
|
self.max_dim = np.amax(self.dim_sizes) |
24
|
|
|
|
25
|
|
|
self.search_space_positions = [ |
26
|
|
|
list(range(len(array))) for array in search_space.values() |
27
|
|
|
] |
28
|
|
|
self.pos_space = dict( |
29
|
|
|
zip( |
30
|
|
|
self.para_names, |
31
|
|
|
[np.arange(len(array)) for array in search_space.values()], |
32
|
|
|
) |
33
|
|
|
) |
34
|
|
|
|
35
|
|
|
self.max_positions = self.dim_sizes - 1 |
36
|
|
|
self.search_space_values = list(search_space.values()) |
37
|
|
|
|
38
|
|
|
def returnNoneIfArgNone(func_): |
39
|
|
|
def wrapper(self, *args): |
40
|
|
|
for arg in [*args]: |
41
|
|
|
if arg is None: |
42
|
|
|
return None |
43
|
|
|
else: |
44
|
|
|
return func_(self, *args) |
45
|
|
|
|
46
|
|
|
return wrapper |
47
|
|
|
|
48
|
|
|
@returnNoneIfArgNone |
49
|
|
|
def position2value(self, position: Optional[list]) -> Optional[list]: |
50
|
|
|
value = [] |
51
|
|
|
|
52
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
53
|
|
|
value.append(space_dim[position[n]]) |
54
|
|
|
|
55
|
|
|
return value |
56
|
|
|
|
57
|
|
|
@returnNoneIfArgNone |
58
|
|
|
def value2position(self, value: Optional[list]) -> Optional[list]: |
59
|
|
|
position = [] |
60
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
61
|
|
|
pos = np.abs(value[n] - np.array(space_dim)).argmin() |
62
|
|
|
position.append(int(pos)) |
63
|
|
|
|
64
|
|
|
return np.array(position) |
65
|
|
|
|
66
|
|
|
@returnNoneIfArgNone |
67
|
|
|
def value2para(self, value: Optional[list]) -> Optional[dict]: |
68
|
|
|
para = {} |
69
|
|
|
for key, p_ in zip(self.para_names, value): |
70
|
|
|
para[key] = p_ |
71
|
|
|
|
72
|
|
|
return para |
73
|
|
|
|
74
|
|
|
@returnNoneIfArgNone |
75
|
|
|
def para2value(self, para: Optional[dict]) -> Optional[list]: |
76
|
|
|
|
77
|
|
|
value = [] |
78
|
|
|
for para_name in self.para_names: |
79
|
|
|
value.append(para[para_name]) |
80
|
|
|
|
81
|
|
|
return value |
82
|
|
|
|
83
|
|
|
@returnNoneIfArgNone |
84
|
|
|
def values2positions(self, values: Optional[list]) -> Optional[list]: |
85
|
|
|
positions_temp = [] |
86
|
|
|
values_np = np.array(values) |
87
|
|
|
|
88
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
89
|
|
|
values_1d = values_np[:, n] |
90
|
|
|
# m_conv = np.abs(values_1d - space_dim[:, np.newaxis]) |
91
|
|
|
# pos_list = m_conv.argmin(0) |
92
|
|
|
pos_list = space_dim.searchsorted(values_1d) |
93
|
|
|
|
94
|
|
|
positions_temp.append(pos_list) |
95
|
|
|
|
96
|
|
|
positions = list(np.array(positions_temp).T.astype(int)) |
97
|
|
|
|
98
|
|
|
return positions |
99
|
|
|
|
100
|
|
|
@returnNoneIfArgNone |
101
|
|
|
def positions2values(self, positions: Optional[list]) -> Optional[list]: |
102
|
|
|
values = [] |
103
|
|
|
positions_np = np.array(positions) |
104
|
|
|
|
105
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
106
|
|
|
pos_1d = positions_np[:, n] |
107
|
|
|
value_ = np.take(space_dim, pos_1d, axis=0) |
108
|
|
|
values.append(value_) |
109
|
|
|
|
110
|
|
|
values = [list(t) for t in zip(*values)] |
111
|
|
|
return values |
112
|
|
|
|
113
|
|
|
@returnNoneIfArgNone |
114
|
|
|
def positions_scores2memory_dict( |
115
|
|
|
self, positions: Optional[list], scores: Optional[list] |
116
|
|
|
) -> Optional[dict]: |
117
|
|
|
value_tuple_list = list(map(tuple, positions)) |
118
|
|
|
memory_dict = dict(zip(value_tuple_list, scores)) |
119
|
|
|
|
120
|
|
|
return memory_dict |
121
|
|
|
|
122
|
|
|
@returnNoneIfArgNone |
123
|
|
|
def memory_dict2positions_scores(self, memory_dict: Optional[dict]): |
124
|
|
|
positions = [np.array(pos).astype(int) for pos in list(memory_dict.keys())] |
125
|
|
|
scores = list(memory_dict.values()) |
126
|
|
|
|
127
|
|
|
return positions, scores |
128
|
|
|
|
129
|
|
|
@returnNoneIfArgNone |
130
|
|
|
def dataframe2memory_dict( |
131
|
|
|
self, dataframe: Optional[pd.DataFrame] |
132
|
|
|
) -> Optional[dict]: |
133
|
|
|
parameter = set(self.search_space.keys()) |
134
|
|
|
memory_para = set(dataframe.columns) |
135
|
|
|
|
136
|
|
|
if parameter <= memory_para: |
137
|
|
|
values = list(dataframe[self.para_names].values) |
138
|
|
|
positions = self.values2positions(values) |
139
|
|
|
scores = dataframe["score"] |
140
|
|
|
|
141
|
|
|
memory_dict = self.positions_scores2memory_dict(positions, scores) |
142
|
|
|
|
143
|
|
|
return memory_dict |
144
|
|
|
else: |
145
|
|
|
missing = parameter - memory_para |
146
|
|
|
|
147
|
|
|
print( |
148
|
|
|
"\nWarning:", |
149
|
|
|
'"{}"'.format(*missing), |
150
|
|
|
"is in search_space but not in memory dataframe", |
151
|
|
|
) |
152
|
|
|
print("Optimization run will continue without memory warm start\n") |
153
|
|
|
|
154
|
|
|
return {} |
155
|
|
|
|
156
|
|
|
@returnNoneIfArgNone |
157
|
|
|
def memory_dict2dataframe( |
158
|
|
|
self, memory_dict: Optional[dict] |
159
|
|
|
) -> Optional[pd.DataFrame]: |
160
|
|
|
positions, score = self.memory_dict2positions_scores(memory_dict) |
161
|
|
|
values = self.positions2values(positions) |
162
|
|
|
|
163
|
|
|
dataframe = pd.DataFrame(values, columns=self.para_names) |
164
|
|
|
dataframe["score"] = score |
165
|
|
|
|
166
|
|
|
return dataframe |
167
|
|
|
|