|
@@ 77-108 (lines=32) @@
|
| 74 |
|
assert diff_time1 < 0.5 |
| 75 |
|
|
| 76 |
|
|
| 77 |
|
def test_memory_warm_start(): |
| 78 |
|
data = load_breast_cancer() |
| 79 |
|
X, y = data.data, data.target |
| 80 |
|
|
| 81 |
|
def objective_function(para): |
| 82 |
|
dtc = DecisionTreeClassifier( |
| 83 |
|
max_depth=para["max_depth"], |
| 84 |
|
min_samples_split=para["min_samples_split"], |
| 85 |
|
) |
| 86 |
|
scores = cross_val_score(dtc, X, y, cv=5) |
| 87 |
|
|
| 88 |
|
return scores.mean() |
| 89 |
|
|
| 90 |
|
search_space = { |
| 91 |
|
"max_depth": np.arange(1, 10), |
| 92 |
|
"min_samples_split": np.arange(2, 20), |
| 93 |
|
} |
| 94 |
|
|
| 95 |
|
c_time1 = time.time() |
| 96 |
|
opt0 = RandomSearchOptimizer(search_space) |
| 97 |
|
opt0.search(objective_function, n_iter=300) |
| 98 |
|
diff_time1 = time.time() - c_time1 |
| 99 |
|
|
| 100 |
|
c_time2 = time.time() |
| 101 |
|
opt1 = RandomSearchOptimizer(search_space) |
| 102 |
|
opt1.search(objective_function, n_iter=300, memory_warm_start=opt0.search_data) |
| 103 |
|
diff_time2 = time.time() - c_time2 |
| 104 |
|
|
| 105 |
|
print("\n diff_time1 ", diff_time1) |
| 106 |
|
print("\n diff_time2 ", diff_time2) |
| 107 |
|
|
| 108 |
|
assert diff_time2 < diff_time1 * 0.5 |
| 109 |
|
|
| 110 |
|
|
| 111 |
|
def test_memory_warm_start_manual(): |
|
@@ 21-48 (lines=28) @@
|
| 18 |
|
} |
| 19 |
|
|
| 20 |
|
|
| 21 |
|
def test_memory_timeSave_0(): |
| 22 |
|
data = load_breast_cancer() |
| 23 |
|
X, y = data.data, data.target |
| 24 |
|
|
| 25 |
|
def objective_function(para): |
| 26 |
|
dtc = DecisionTreeClassifier(min_samples_split=para["min_samples_split"]) |
| 27 |
|
scores = cross_val_score(dtc, X, y, cv=5) |
| 28 |
|
|
| 29 |
|
return scores.mean() |
| 30 |
|
|
| 31 |
|
search_space = { |
| 32 |
|
"min_samples_split": np.arange(2, 20), |
| 33 |
|
} |
| 34 |
|
|
| 35 |
|
c_time1 = time.time() |
| 36 |
|
opt = RandomSearchOptimizer(search_space) |
| 37 |
|
opt.search(objective_function, n_iter=100) |
| 38 |
|
diff_time1 = time.time() - c_time1 |
| 39 |
|
|
| 40 |
|
c_time2 = time.time() |
| 41 |
|
opt = RandomSearchOptimizer(search_space) |
| 42 |
|
opt.search(objective_function, n_iter=100, memory=False) |
| 43 |
|
diff_time2 = time.time() - c_time2 |
| 44 |
|
|
| 45 |
|
print("\n diff_time1 ", diff_time1) |
| 46 |
|
print("\n diff_time2 ", diff_time2) |
| 47 |
|
|
| 48 |
|
assert diff_time1 < diff_time2 * 0.5 |
| 49 |
|
|
| 50 |
|
|
| 51 |
|
def test_memory_timeSave_1(): |