@@ 50-64 (lines=15) @@ | ||
47 | assert opt.best_para == init |
|
48 | ||
49 | ||
50 | @pytest.mark.parametrize(*optimizers) |
|
51 | def test_initialize_warm_start_2(Optimizer): |
|
52 | search_space = { |
|
53 | "x1": np.arange(-10, 10, 1), |
|
54 | } |
|
55 | init = { |
|
56 | "x1": -10, |
|
57 | } |
|
58 | ||
59 | initialize = {"warm_start": [init], "random": 0, "vertices": 0, "grid": 0} |
|
60 | ||
61 | opt = Optimizer(search_space, initialize=initialize) |
|
62 | opt.search(objective_function, n_iter=1) |
|
63 | ||
64 | assert opt.best_para == init |
|
65 | ||
66 | ||
67 | @pytest.mark.parametrize(*optimizers) |
|
@@ 33-47 (lines=15) @@ | ||
30 | assert abs(opt.best_score) < 0.001 |
|
31 | ||
32 | ||
33 | @pytest.mark.parametrize(*optimizers) |
|
34 | def test_initialize_warm_start_1(Optimizer): |
|
35 | search_space = { |
|
36 | "x1": np.arange(-10, 10, 1), |
|
37 | } |
|
38 | init = { |
|
39 | "x1": -10, |
|
40 | } |
|
41 | ||
42 | initialize = {"warm_start": [init]} |
|
43 | ||
44 | opt = Optimizer(search_space, initialize=initialize) |
|
45 | opt.search(objective_function, n_iter=1) |
|
46 | ||
47 | assert opt.best_para == init |
|
48 | ||
49 | ||
50 | @pytest.mark.parametrize(*optimizers) |