Code Duplication    Length = 21-24 lines in 3 locations

tests/test_optimizers/test_random_state.py 3 locations

@@ 98-121 (lines=24) @@
95
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) > err
96
97
98
def test_random_state_direct():
99
    opt0 = DirectAlgorithm(
100
        search_space, initialize={"random": n_random}, random_state=1
101
    )
102
    opt0.search(
103
        ackkley_function,
104
        n_iter=n_iter,
105
    )
106
107
    opt1 = DirectAlgorithm(
108
        search_space, initialize={"random": n_random}, random_state=10
109
    )
110
    opt1.search(
111
        ackkley_function,
112
        n_iter=n_iter,
113
    )
114
115
    print("\n opt0.search_data \n", opt0.search_data)
116
    print("\n opt1.search_data \n", opt1.search_data)
117
118
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
119
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
120
121
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
122
123
124
@pytest.mark.parametrize(*optimizers)
@@ 75-95 (lines=21) @@
72
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
73
74
75
@pytest.mark.parametrize(*optimizers)
76
def test_random_state_2(Optimizer):
77
    opt0 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
78
    opt0.search(
79
        ackkley_function,
80
        n_iter=n_iter,
81
    )
82
83
    opt1 = Optimizer(search_space, initialize={"random": n_random}, random_state=10)
84
    opt1.search(
85
        ackkley_function,
86
        n_iter=n_iter,
87
    )
88
89
    print("\n opt0.search_data \n", opt0.search_data)
90
    print("\n opt1.search_data \n", opt1.search_data)
91
92
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
93
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
94
95
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) > err
96
97
98
def test_random_state_direct():
@@ 32-52 (lines=21) @@
29
n_last = n_iter - n_random
30
31
32
@pytest.mark.parametrize(*optimizers)
33
def test_random_state_0(Optimizer):
34
    opt0 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
35
    opt0.search(
36
        ackkley_function,
37
        n_iter=n_iter,
38
    )
39
40
    opt1 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
41
    opt1.search(
42
        ackkley_function,
43
        n_iter=n_iter,
44
    )
45
46
    print("\n opt0.search_data \n", opt0.search_data)
47
    print("\n opt1.search_data \n", opt1.search_data)
48
49
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
50
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
51
52
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
53
54
55
@pytest.mark.parametrize(*optimizers)