@@ 51-78 (lines=28) @@ | ||
48 | assert -100 > opt.best_score > max_score |
|
49 | ||
50 | ||
51 | @pytest.mark.parametrize(*optimizers) |
|
52 | def test_max_score_1(Optimizer): |
|
53 | def objective_function(para): |
|
54 | score = -para["x1"] * para["x1"] |
|
55 | time.sleep(0.01) |
|
56 | return score |
|
57 | ||
58 | search_space = { |
|
59 | "x1": np.arange(0, 100, 0.1), |
|
60 | } |
|
61 | ||
62 | max_score = -9999 |
|
63 | ||
64 | c_time = time.time() |
|
65 | opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 99}]}) |
|
66 | opt.search( |
|
67 | objective_function, |
|
68 | n_iter=100000, |
|
69 | max_score=max_score, |
|
70 | ) |
|
71 | diff_time = time.time() - c_time |
|
72 | ||
73 | print("\n Results head \n", opt.results.head()) |
|
74 | print("\n Results tail \n", opt.results.tail()) |
|
75 | ||
76 | print("\nN iter:", len(opt.results)) |
|
77 | ||
78 | assert diff_time < 1 |
|
79 | ||
@@ 21-48 (lines=28) @@ | ||
18 | } |
|
19 | ||
20 | ||
21 | @pytest.mark.parametrize(*optimizers) |
|
22 | def test_max_score_0(Optimizer): |
|
23 | def objective_function(para): |
|
24 | score = -para["x1"] * para["x1"] |
|
25 | return score |
|
26 | ||
27 | search_space = { |
|
28 | "x1": np.arange(0, 100, 0.1), |
|
29 | } |
|
30 | ||
31 | max_score = -9999 |
|
32 | ||
33 | opt = Optimizer( |
|
34 | search_space, |
|
35 | initialize={"warm_start": [{"x1": 99}]}, |
|
36 | ) |
|
37 | opt.search( |
|
38 | objective_function, |
|
39 | n_iter=100, |
|
40 | max_score=max_score, |
|
41 | ) |
|
42 | ||
43 | print("\n Results head \n", opt.results.head()) |
|
44 | print("\n Results tail \n", opt.results.tail()) |
|
45 | ||
46 | print("\nN iter:", len(opt.results)) |
|
47 | ||
48 | assert -100 > opt.best_score > max_score |
|
49 | ||
50 | ||
51 | @pytest.mark.parametrize(*optimizers) |