Code Duplication    Length = 18-20 lines in 3 locations

gradient_free_optimizers/optimizers/sequence_model/surrogate_models.py 1 location

@@ 100-119 (lines=20) @@
97
        super().__init__(**kwargs)
98
99
100
class GPR:
101
    def __init__(self):
102
        length_scale_param = 1
103
        length_scale_bounds_param = (1e-05, 100000.0)
104
        nu_param = 0.5
105
        matern = Matern(
106
            # length_scale=length_scale_param,
107
            # length_scale_bounds=length_scale_bounds_param,
108
            nu=nu_param,
109
        )
110
111
        self.gpr = GaussianProcessRegressor(
112
            kernel=matern + WhiteKernel(), n_restarts_optimizer=0
113
        )
114
115
    def fit(self, X, y):
116
        self.gpr.fit(X, y)
117
118
    def predict(self, X, return_std=False):
119
        return self.gpr.predict(X, return_std=return_std)
120
121
122
class GPR_linear:

tests/test_optimizers/test_parameter/test_ensemble_optimizer_para_init.py 1 location

@@ 82-99 (lines=18) @@
79
search_data6 = opt6.results
80
81
82
class GPR:
83
    def __init__(self):
84
        nu_param = 0.5
85
        matern = Matern(
86
            # length_scale=length_scale_param,
87
            # length_scale_bounds=length_scale_bounds_param,
88
            nu=nu_param,
89
        )
90
91
        self.gpr = GaussianProcessRegressor(
92
            kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1
93
        )
94
95
    def fit(self, X, y):
96
        self.gpr.fit(X, y)
97
98
    def predict(self, X, return_std=False):
99
        return self.gpr.predict(X, return_std=return_std)
100
101
102
ensemble_optimizer_para = [

tests/test_optimizers/test_parameter/test_bayesian_optimizer_para_init.py 1 location

@@ 79-96 (lines=18) @@
76
search_data6 = opt6.results
77
78
79
class GPR:
80
    def __init__(self):
81
        nu_param = 0.5
82
        matern = Matern(
83
            # length_scale=length_scale_param,
84
            # length_scale_bounds=length_scale_bounds_param,
85
            nu=nu_param,
86
        )
87
88
        self.gpr = GaussianProcessRegressor(
89
            kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1
90
        )
91
92
    def fit(self, X, y):
93
        self.gpr.fit(X, y)
94
95
    def predict(self, X, return_std=False):
96
        return self.gpr.predict(X, return_std=return_std)
97
98
99
bayesian_optimizer_para = [