gradient_free_optimizers/optimizers/sequence_model/surrogate_models.py 1 location
|
@@ 100-119 (lines=20) @@
|
97 |
|
super().__init__(**kwargs) |
98 |
|
|
99 |
|
|
100 |
|
class GPR: |
101 |
|
def __init__(self): |
102 |
|
length_scale_param = 1 |
103 |
|
length_scale_bounds_param = (1e-05, 100000.0) |
104 |
|
nu_param = 0.5 |
105 |
|
matern = Matern( |
106 |
|
# length_scale=length_scale_param, |
107 |
|
# length_scale_bounds=length_scale_bounds_param, |
108 |
|
nu=nu_param, |
109 |
|
) |
110 |
|
|
111 |
|
self.gpr = GaussianProcessRegressor( |
112 |
|
kernel=matern + WhiteKernel(), n_restarts_optimizer=0 |
113 |
|
) |
114 |
|
|
115 |
|
def fit(self, X, y): |
116 |
|
self.gpr.fit(X, y) |
117 |
|
|
118 |
|
def predict(self, X, return_std=False): |
119 |
|
return self.gpr.predict(X, return_std=return_std) |
120 |
|
|
121 |
|
|
122 |
|
class GPR_linear: |
tests/test_optimizers/test_parameter/test_ensemble_optimizer_para_init.py 1 location
|
@@ 82-99 (lines=18) @@
|
79 |
|
search_data6 = opt6.results |
80 |
|
|
81 |
|
|
82 |
|
class GPR: |
83 |
|
def __init__(self): |
84 |
|
nu_param = 0.5 |
85 |
|
matern = Matern( |
86 |
|
# length_scale=length_scale_param, |
87 |
|
# length_scale_bounds=length_scale_bounds_param, |
88 |
|
nu=nu_param, |
89 |
|
) |
90 |
|
|
91 |
|
self.gpr = GaussianProcessRegressor( |
92 |
|
kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1 |
93 |
|
) |
94 |
|
|
95 |
|
def fit(self, X, y): |
96 |
|
self.gpr.fit(X, y) |
97 |
|
|
98 |
|
def predict(self, X, return_std=False): |
99 |
|
return self.gpr.predict(X, return_std=return_std) |
100 |
|
|
101 |
|
|
102 |
|
ensemble_optimizer_para = [ |
tests/test_optimizers/test_parameter/test_bayesian_optimizer_para_init.py 1 location
|
@@ 79-96 (lines=18) @@
|
76 |
|
search_data6 = opt6.results |
77 |
|
|
78 |
|
|
79 |
|
class GPR: |
80 |
|
def __init__(self): |
81 |
|
nu_param = 0.5 |
82 |
|
matern = Matern( |
83 |
|
# length_scale=length_scale_param, |
84 |
|
# length_scale_bounds=length_scale_bounds_param, |
85 |
|
nu=nu_param, |
86 |
|
) |
87 |
|
|
88 |
|
self.gpr = GaussianProcessRegressor( |
89 |
|
kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1 |
90 |
|
) |
91 |
|
|
92 |
|
def fit(self, X, y): |
93 |
|
self.gpr.fit(X, y) |
94 |
|
|
95 |
|
def predict(self, X, return_std=False): |
96 |
|
return self.gpr.predict(X, return_std=return_std) |
97 |
|
|
98 |
|
|
99 |
|
bayesian_optimizer_para = [ |