gradient_free_optimizers/optimizers/sequence_model/surrogate_models.py 1 location
|
@@ 100-119 (lines=20) @@
|
| 97 |
|
super().__init__(**kwargs) |
| 98 |
|
|
| 99 |
|
|
| 100 |
|
class GPR: |
| 101 |
|
def __init__(self): |
| 102 |
|
length_scale_param = 1 |
| 103 |
|
length_scale_bounds_param = (1e-05, 100000.0) |
| 104 |
|
nu_param = 0.5 |
| 105 |
|
matern = Matern( |
| 106 |
|
# length_scale=length_scale_param, |
| 107 |
|
# length_scale_bounds=length_scale_bounds_param, |
| 108 |
|
nu=nu_param, |
| 109 |
|
) |
| 110 |
|
|
| 111 |
|
self.gpr = GaussianProcessRegressor( |
| 112 |
|
kernel=matern + WhiteKernel(), n_restarts_optimizer=0 |
| 113 |
|
) |
| 114 |
|
|
| 115 |
|
def fit(self, X, y): |
| 116 |
|
self.gpr.fit(X, y) |
| 117 |
|
|
| 118 |
|
def predict(self, X, return_std=False): |
| 119 |
|
return self.gpr.predict(X, return_std=return_std) |
| 120 |
|
|
| 121 |
|
|
| 122 |
|
class GPR_linear: |
tests/test_optimizers/test_parameter/test_ensemble_optimizer_para_init.py 1 location
|
@@ 82-99 (lines=18) @@
|
| 79 |
|
search_data6 = opt6.results |
| 80 |
|
|
| 81 |
|
|
| 82 |
|
class GPR: |
| 83 |
|
def __init__(self): |
| 84 |
|
nu_param = 0.5 |
| 85 |
|
matern = Matern( |
| 86 |
|
# length_scale=length_scale_param, |
| 87 |
|
# length_scale_bounds=length_scale_bounds_param, |
| 88 |
|
nu=nu_param, |
| 89 |
|
) |
| 90 |
|
|
| 91 |
|
self.gpr = GaussianProcessRegressor( |
| 92 |
|
kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1 |
| 93 |
|
) |
| 94 |
|
|
| 95 |
|
def fit(self, X, y): |
| 96 |
|
self.gpr.fit(X, y) |
| 97 |
|
|
| 98 |
|
def predict(self, X, return_std=False): |
| 99 |
|
return self.gpr.predict(X, return_std=return_std) |
| 100 |
|
|
| 101 |
|
|
| 102 |
|
ensemble_optimizer_para = [ |
tests/test_optimizers/test_parameter/test_bayesian_optimizer_para_init.py 1 location
|
@@ 79-96 (lines=18) @@
|
| 76 |
|
search_data6 = opt6.results |
| 77 |
|
|
| 78 |
|
|
| 79 |
|
class GPR: |
| 80 |
|
def __init__(self): |
| 81 |
|
nu_param = 0.5 |
| 82 |
|
matern = Matern( |
| 83 |
|
# length_scale=length_scale_param, |
| 84 |
|
# length_scale_bounds=length_scale_bounds_param, |
| 85 |
|
nu=nu_param, |
| 86 |
|
) |
| 87 |
|
|
| 88 |
|
self.gpr = GaussianProcessRegressor( |
| 89 |
|
kernel=matern + RBF() + WhiteKernel(), n_restarts_optimizer=1 |
| 90 |
|
) |
| 91 |
|
|
| 92 |
|
def fit(self, X, y): |
| 93 |
|
self.gpr.fit(X, y) |
| 94 |
|
|
| 95 |
|
def predict(self, X, return_std=False): |
| 96 |
|
return self.gpr.predict(X, return_std=return_std) |
| 97 |
|
|
| 98 |
|
|
| 99 |
|
bayesian_optimizer_para = [ |