tests/test_optimizer_parameter/test_Bayesian.py 1 location
|
@@ 24-38 (lines=15) @@
|
21 |
|
_base_test(opt, n_iter, opt_para=opt_para) |
22 |
|
|
23 |
|
|
24 |
|
def test_warm_start_smbo(): |
25 |
|
gpr_X, gpr_y = [], [] |
26 |
|
for _ in range(10): |
27 |
|
pos_ = np.random.randint(0, high=9) |
28 |
|
pos = np.array([pos_]) |
29 |
|
|
30 |
|
para = { |
31 |
|
"x1": pos_, |
32 |
|
} |
33 |
|
gpr_X.append(pos) |
34 |
|
gpr_y.append(get_score(para)) |
35 |
|
|
36 |
|
for warm_start_smbo in [None, (gpr_X, gpr_y)]: |
37 |
|
opt_para = {"warm_start_smbo": warm_start_smbo} |
38 |
|
_base_test(opt, n_iter, opt_para=opt_para) |
39 |
|
|
40 |
|
|
41 |
|
def test_max_sample_size(): |
tests/test_optimizer_parameter/test_DecisionTree.py 1 location
|
@@ 18-32 (lines=15) @@
|
15 |
|
return -(para["x1"] * para["x1"]) |
16 |
|
|
17 |
|
|
18 |
|
def test_warm_start_smbo(): |
19 |
|
gpr_X, gpr_y = [], [] |
20 |
|
for _ in range(10): |
21 |
|
pos_ = np.random.randint(0, high=9) |
22 |
|
pos = np.array([pos_]) |
23 |
|
|
24 |
|
para = { |
25 |
|
"x1": pos_, |
26 |
|
} |
27 |
|
gpr_X.append(pos) |
28 |
|
gpr_y.append(get_score(para)) |
29 |
|
|
30 |
|
for warm_start_smbo in [None, (gpr_X, gpr_y)]: |
31 |
|
opt_para = {"warm_start_smbo": warm_start_smbo} |
32 |
|
_base_test(opt, n_iter, opt_para=opt_para) |
33 |
|
|
34 |
|
|
35 |
|
def test_max_sample_size(): |
tests/test_optimizer_parameter/test_TPE.py 1 location
|
@@ 18-32 (lines=15) @@
|
15 |
|
return -(para["x1"] * para["x1"]) |
16 |
|
|
17 |
|
|
18 |
|
def test_warm_start_smbo(): |
19 |
|
gpr_X, gpr_y = [], [] |
20 |
|
for _ in range(10): |
21 |
|
pos_ = np.random.randint(0, high=9) |
22 |
|
pos = np.array([pos_]) |
23 |
|
|
24 |
|
para = { |
25 |
|
"x1": pos_, |
26 |
|
} |
27 |
|
gpr_X.append(pos) |
28 |
|
gpr_y.append(get_score(para)) |
29 |
|
|
30 |
|
for warm_start_smbo in [None, (gpr_X, gpr_y)]: |
31 |
|
opt_para = {"warm_start_smbo": warm_start_smbo} |
32 |
|
_base_test(opt, n_iter, opt_para=opt_para) |
33 |
|
|
34 |
|
|
tests/test_optimizer_parameter/test_EnsembleOptimizer.py 1 location
|
@@ 18-32 (lines=15) @@
|
15 |
|
return -(para["x1"] * para["x1"]) |
16 |
|
|
17 |
|
|
18 |
|
def test_warm_start_smbo(): |
19 |
|
gpr_X, gpr_y = [], [] |
20 |
|
for _ in range(10): |
21 |
|
pos_ = np.random.randint(0, high=9) |
22 |
|
pos = np.array([pos_]) |
23 |
|
|
24 |
|
para = { |
25 |
|
"x1": pos_, |
26 |
|
} |
27 |
|
gpr_X.append(pos) |
28 |
|
gpr_y.append(get_score(para)) |
29 |
|
|
30 |
|
for warm_start_smbo in [None, (gpr_X, gpr_y)]: |
31 |
|
opt_para = {"warm_start_smbo": warm_start_smbo} |
32 |
|
_base_test(opt, n_iter, opt_para=opt_para) |
33 |
|
|