Code Duplication    Length = 15-15 lines in 4 locations

tests/test_optimizer_parameter/test_Bayesian.py 1 location

@@ 24-38 (lines=15) @@
21
        _base_test(opt, n_iter, opt_para=opt_para)
22
23
24
def test_warm_start_smbo():
25
    gpr_X, gpr_y = [], []
26
    for _ in range(10):
27
        pos_ = np.random.randint(0, high=9)
28
        pos = np.array([pos_])
29
30
        para = {
31
            "x1": pos_,
32
        }
33
        gpr_X.append(pos)
34
        gpr_y.append(get_score(para))
35
36
    for warm_start_smbo in [None, (gpr_X, gpr_y)]:
37
        opt_para = {"warm_start_smbo": warm_start_smbo}
38
        _base_test(opt, n_iter, opt_para=opt_para)
39
40
41
def test_max_sample_size():

tests/test_optimizer_parameter/test_DecisionTree.py 1 location

@@ 18-32 (lines=15) @@
15
    return -(para["x1"] * para["x1"])
16
17
18
def test_warm_start_smbo():
19
    gpr_X, gpr_y = [], []
20
    for _ in range(10):
21
        pos_ = np.random.randint(0, high=9)
22
        pos = np.array([pos_])
23
24
        para = {
25
            "x1": pos_,
26
        }
27
        gpr_X.append(pos)
28
        gpr_y.append(get_score(para))
29
30
    for warm_start_smbo in [None, (gpr_X, gpr_y)]:
31
        opt_para = {"warm_start_smbo": warm_start_smbo}
32
        _base_test(opt, n_iter, opt_para=opt_para)
33
34
35
def test_max_sample_size():

tests/test_optimizer_parameter/test_TPE.py 1 location

@@ 18-32 (lines=15) @@
15
    return -(para["x1"] * para["x1"])
16
17
18
def test_warm_start_smbo():
19
    gpr_X, gpr_y = [], []
20
    for _ in range(10):
21
        pos_ = np.random.randint(0, high=9)
22
        pos = np.array([pos_])
23
24
        para = {
25
            "x1": pos_,
26
        }
27
        gpr_X.append(pos)
28
        gpr_y.append(get_score(para))
29
30
    for warm_start_smbo in [None, (gpr_X, gpr_y)]:
31
        opt_para = {"warm_start_smbo": warm_start_smbo}
32
        _base_test(opt, n_iter, opt_para=opt_para)
33
34

tests/test_optimizer_parameter/test_EnsembleOptimizer.py 1 location

@@ 18-32 (lines=15) @@
15
    return -(para["x1"] * para["x1"])
16
17
18
def test_warm_start_smbo():
19
    gpr_X, gpr_y = [], []
20
    for _ in range(10):
21
        pos_ = np.random.randint(0, high=9)
22
        pos = np.array([pos_])
23
24
        para = {
25
            "x1": pos_,
26
        }
27
        gpr_X.append(pos)
28
        gpr_y.append(get_score(para))
29
30
    for warm_start_smbo in [None, (gpr_X, gpr_y)]:
31
        opt_para = {"warm_start_smbo": warm_start_smbo}
32
        _base_test(opt, n_iter, opt_para=opt_para)
33