|
@@ 83-101 (lines=19) @@
|
| 80 |
|
assert len(set(x1_results)) < len(x1_results) |
| 81 |
|
|
| 82 |
|
|
| 83 |
|
def test_attributes_results_7(): |
| 84 |
|
def objective_function(para): |
| 85 |
|
score = -para["x1"] * para["x1"] |
| 86 |
|
return score |
| 87 |
|
|
| 88 |
|
search_space = { |
| 89 |
|
"x1": np.arange(0, 10, 1), |
| 90 |
|
} |
| 91 |
|
|
| 92 |
|
opt = RandomSearchOptimizer(search_space) |
| 93 |
|
opt.search( |
| 94 |
|
objective_function, n_iter=20, initialize={"random": 1}, memory=True |
| 95 |
|
) |
| 96 |
|
|
| 97 |
|
x1_results = list(opt.results["x1"].values) |
| 98 |
|
|
| 99 |
|
print("\n x1_results \n", x1_results) |
| 100 |
|
|
| 101 |
|
assert len(set(x1_results)) == len(x1_results) |
| 102 |
|
|
| 103 |
|
|
| 104 |
|
def test_attributes_results_8(): |
|
@@ 62-80 (lines=19) @@
|
| 59 |
|
assert 10 in list(opt.results["x1"].values) |
| 60 |
|
|
| 61 |
|
|
| 62 |
|
def test_attributes_results_6(): |
| 63 |
|
def objective_function(para): |
| 64 |
|
score = -para["x1"] * para["x1"] |
| 65 |
|
return score |
| 66 |
|
|
| 67 |
|
search_space = { |
| 68 |
|
"x1": np.arange(0, 10, 1), |
| 69 |
|
} |
| 70 |
|
|
| 71 |
|
opt = RandomSearchOptimizer(search_space) |
| 72 |
|
opt.search( |
| 73 |
|
objective_function, n_iter=20, initialize={"random": 1}, memory=False |
| 74 |
|
) |
| 75 |
|
|
| 76 |
|
x1_results = list(opt.results["x1"].values) |
| 77 |
|
|
| 78 |
|
print("\n x1_results \n", x1_results) |
| 79 |
|
|
| 80 |
|
assert len(set(x1_results)) < len(x1_results) |
| 81 |
|
|
| 82 |
|
|
| 83 |
|
def test_attributes_results_7(): |