@@ 295-312 (lines=18) @@ | ||
292 | assert min_score_accept < score_mean |
|
293 | ||
294 | ||
295 | def test_EnsembleOptimizer_convergence(): |
|
296 | scores = [] |
|
297 | for rnd_st in tqdm(range(n_opts)): |
|
298 | opt = EnsembleOptimizer(search_space) |
|
299 | opt.search( |
|
300 | objective_function, |
|
301 | n_iter=int(n_iter / 2), |
|
302 | random_state=rnd_st, |
|
303 | memory=False, |
|
304 | print_results=False, |
|
305 | progress_bar=False, |
|
306 | initialize=initialize, |
|
307 | ) |
|
308 | ||
309 | scores.append(opt.best_score) |
|
310 | ||
311 | score_mean = np.array(scores).mean() |
|
312 | assert min_score_accept < score_mean |
|
313 | ||
@@ 275-292 (lines=18) @@ | ||
272 | assert min_score_accept < score_mean |
|
273 | ||
274 | ||
275 | def test_DecisionTreeOptimizer_convergence(): |
|
276 | scores = [] |
|
277 | for rnd_st in tqdm(range(n_opts)): |
|
278 | opt = DecisionTreeOptimizer(search_space) |
|
279 | opt.search( |
|
280 | objective_function, |
|
281 | n_iter=int(n_iter / 2), |
|
282 | random_state=rnd_st, |
|
283 | memory=False, |
|
284 | print_results=False, |
|
285 | progress_bar=False, |
|
286 | initialize=initialize, |
|
287 | ) |
|
288 | ||
289 | scores.append(opt.best_score) |
|
290 | ||
291 | score_mean = np.array(scores).mean() |
|
292 | assert min_score_accept < score_mean |
|
293 | ||
294 | ||
295 | def test_EnsembleOptimizer_convergence(): |
|
@@ 255-272 (lines=18) @@ | ||
252 | assert min_score_accept < score_mean |
|
253 | ||
254 | ||
255 | def test_TreeStructuredParzenEstimators_convergence(): |
|
256 | scores = [] |
|
257 | for rnd_st in tqdm(range(n_opts)): |
|
258 | opt = TreeStructuredParzenEstimators(search_space) |
|
259 | opt.search( |
|
260 | objective_function, |
|
261 | n_iter=int(n_iter / 2), |
|
262 | random_state=rnd_st, |
|
263 | memory=False, |
|
264 | print_results=False, |
|
265 | progress_bar=False, |
|
266 | initialize=initialize, |
|
267 | ) |
|
268 | ||
269 | scores.append(opt.best_score) |
|
270 | ||
271 | score_mean = np.array(scores).mean() |
|
272 | assert min_score_accept < score_mean |
|
273 | ||
274 | ||
275 | def test_DecisionTreeOptimizer_convergence(): |
|
@@ 235-252 (lines=18) @@ | ||
232 | assert min_score_accept < score_mean |
|
233 | ||
234 | ||
235 | def test_BayesianOptimizer_convergence(): |
|
236 | scores = [] |
|
237 | for rnd_st in tqdm(range(n_opts)): |
|
238 | opt = BayesianOptimizer(search_space) |
|
239 | opt.search( |
|
240 | objective_function, |
|
241 | n_iter=int(n_iter / 2), |
|
242 | random_state=rnd_st, |
|
243 | memory=False, |
|
244 | print_results=False, |
|
245 | progress_bar=False, |
|
246 | initialize=initialize, |
|
247 | ) |
|
248 | ||
249 | scores.append(opt.best_score) |
|
250 | ||
251 | score_mean = np.array(scores).mean() |
|
252 | assert min_score_accept < score_mean |
|
253 | ||
254 | ||
255 | def test_TreeStructuredParzenEstimators_convergence(): |
|
@@ 215-232 (lines=18) @@ | ||
212 | assert min_score_accept < score_mean |
|
213 | ||
214 | ||
215 | def test_EvolutionStrategyOptimizer_convergence(): |
|
216 | scores = [] |
|
217 | for rnd_st in tqdm(range(n_opts)): |
|
218 | opt = EvolutionStrategyOptimizer(search_space) |
|
219 | opt.search( |
|
220 | objective_function, |
|
221 | n_iter=n_iter, |
|
222 | random_state=rnd_st, |
|
223 | memory=False, |
|
224 | print_results=False, |
|
225 | progress_bar=False, |
|
226 | initialize=initialize, |
|
227 | ) |
|
228 | ||
229 | scores.append(opt.best_score) |
|
230 | ||
231 | score_mean = np.array(scores).mean() |
|
232 | assert min_score_accept < score_mean |
|
233 | ||
234 | ||
235 | def test_BayesianOptimizer_convergence(): |
|
@@ 195-212 (lines=18) @@ | ||
192 | assert min_score_accept < score_mean |
|
193 | ||
194 | ||
195 | def test_ParticleSwarmOptimizer_convergence(): |
|
196 | scores = [] |
|
197 | for rnd_st in tqdm(range(n_opts)): |
|
198 | opt = ParticleSwarmOptimizer(search_space) |
|
199 | opt.search( |
|
200 | objective_function, |
|
201 | n_iter=n_iter, |
|
202 | random_state=rnd_st, |
|
203 | memory=False, |
|
204 | print_results=False, |
|
205 | progress_bar=False, |
|
206 | initialize=initialize, |
|
207 | ) |
|
208 | ||
209 | scores.append(opt.best_score) |
|
210 | ||
211 | score_mean = np.array(scores).mean() |
|
212 | assert min_score_accept < score_mean |
|
213 | ||
214 | ||
215 | def test_EvolutionStrategyOptimizer_convergence(): |
|
@@ 175-192 (lines=18) @@ | ||
172 | assert min_score_accept < score_mean |
|
173 | ||
174 | ||
175 | def test_ParallelTemperingOptimizer_convergence(): |
|
176 | scores = [] |
|
177 | for rnd_st in tqdm(range(n_opts)): |
|
178 | opt = ParallelTemperingOptimizer(search_space) |
|
179 | opt.search( |
|
180 | objective_function, |
|
181 | n_iter=n_iter, |
|
182 | random_state=rnd_st, |
|
183 | memory=False, |
|
184 | print_results=False, |
|
185 | progress_bar=False, |
|
186 | initialize=initialize, |
|
187 | ) |
|
188 | ||
189 | scores.append(opt.best_score) |
|
190 | ||
191 | score_mean = np.array(scores).mean() |
|
192 | assert min_score_accept < score_mean |
|
193 | ||
194 | ||
195 | def test_ParticleSwarmOptimizer_convergence(): |
|
@@ 155-172 (lines=18) @@ | ||
152 | assert min_score_accept < score_mean |
|
153 | ||
154 | ||
155 | def test_SimulatedAnnealingOptimizer_convergence(): |
|
156 | scores = [] |
|
157 | for rnd_st in tqdm(range(n_opts)): |
|
158 | opt = SimulatedAnnealingOptimizer(search_space) |
|
159 | opt.search( |
|
160 | objective_function, |
|
161 | n_iter=n_iter, |
|
162 | random_state=rnd_st, |
|
163 | memory=False, |
|
164 | print_results=False, |
|
165 | progress_bar=False, |
|
166 | initialize=initialize, |
|
167 | ) |
|
168 | ||
169 | scores.append(opt.best_score) |
|
170 | ||
171 | score_mean = np.array(scores).mean() |
|
172 | assert min_score_accept < score_mean |
|
173 | ||
174 | ||
175 | def test_ParallelTemperingOptimizer_convergence(): |
|
@@ 135-152 (lines=18) @@ | ||
132 | assert min_score_accept < score_mean |
|
133 | ||
134 | ||
135 | def test_RandomAnnealingOptimizer_convergence(): |
|
136 | scores = [] |
|
137 | for rnd_st in tqdm(range(n_opts)): |
|
138 | opt = RandomAnnealingOptimizer(search_space) |
|
139 | opt.search( |
|
140 | objective_function, |
|
141 | n_iter=n_iter, |
|
142 | random_state=rnd_st, |
|
143 | memory=False, |
|
144 | print_results=False, |
|
145 | progress_bar=False, |
|
146 | initialize=initialize, |
|
147 | ) |
|
148 | ||
149 | scores.append(opt.best_score) |
|
150 | ||
151 | score_mean = np.array(scores).mean() |
|
152 | assert min_score_accept < score_mean |
|
153 | ||
154 | ||
155 | def test_SimulatedAnnealingOptimizer_convergence(): |
|
@@ 115-132 (lines=18) @@ | ||
112 | assert min_score_accept < score_mean |
|
113 | ||
114 | ||
115 | def test_RandomRestartHillClimbingOptimizer_convergence(): |
|
116 | scores = [] |
|
117 | for rnd_st in tqdm(range(n_opts)): |
|
118 | opt = RandomRestartHillClimbingOptimizer(search_space) |
|
119 | opt.search( |
|
120 | objective_function, |
|
121 | n_iter=n_iter, |
|
122 | random_state=rnd_st, |
|
123 | memory=False, |
|
124 | print_results=False, |
|
125 | progress_bar=False, |
|
126 | initialize=initialize, |
|
127 | ) |
|
128 | ||
129 | scores.append(opt.best_score) |
|
130 | ||
131 | score_mean = np.array(scores).mean() |
|
132 | assert min_score_accept < score_mean |
|
133 | ||
134 | ||
135 | def test_RandomAnnealingOptimizer_convergence(): |
|
@@ 95-112 (lines=18) @@ | ||
92 | assert min_score_accept < score_mean |
|
93 | ||
94 | ||
95 | def test_RandomSearchOptimizer_convergence(): |
|
96 | scores = [] |
|
97 | for rnd_st in tqdm(range(n_opts)): |
|
98 | opt = RandomSearchOptimizer(search_space) |
|
99 | opt.search( |
|
100 | objective_function, |
|
101 | n_iter=n_iter, |
|
102 | random_state=rnd_st, |
|
103 | memory=False, |
|
104 | print_results=False, |
|
105 | progress_bar=False, |
|
106 | initialize=initialize, |
|
107 | ) |
|
108 | ||
109 | scores.append(opt.best_score) |
|
110 | ||
111 | score_mean = np.array(scores).mean() |
|
112 | assert min_score_accept < score_mean |
|
113 | ||
114 | ||
115 | def test_RandomRestartHillClimbingOptimizer_convergence(): |
|
@@ 75-92 (lines=18) @@ | ||
72 | assert min_score_accept < score_mean |
|
73 | ||
74 | ||
75 | def test_TabuOptimizer_convergence(): |
|
76 | scores = [] |
|
77 | for rnd_st in tqdm(range(n_opts)): |
|
78 | opt = TabuOptimizer(search_space) |
|
79 | opt.search( |
|
80 | objective_function, |
|
81 | n_iter=n_iter, |
|
82 | random_state=rnd_st, |
|
83 | memory=False, |
|
84 | print_results=False, |
|
85 | progress_bar=False, |
|
86 | initialize=initialize, |
|
87 | ) |
|
88 | ||
89 | scores.append(opt.best_score) |
|
90 | ||
91 | score_mean = np.array(scores).mean() |
|
92 | assert min_score_accept < score_mean |
|
93 | ||
94 | ||
95 | def test_RandomSearchOptimizer_convergence(): |
|
@@ 55-72 (lines=18) @@ | ||
52 | assert min_score_accept < score_mean |
|
53 | ||
54 | ||
55 | def test_StochasticHillClimbingOptimizer_convergence(): |
|
56 | scores = [] |
|
57 | for rnd_st in tqdm(range(n_opts)): |
|
58 | opt = StochasticHillClimbingOptimizer(search_space) |
|
59 | opt.search( |
|
60 | objective_function, |
|
61 | n_iter=n_iter, |
|
62 | random_state=rnd_st, |
|
63 | memory=False, |
|
64 | print_results=False, |
|
65 | progress_bar=False, |
|
66 | initialize=initialize, |
|
67 | ) |
|
68 | ||
69 | scores.append(opt.best_score) |
|
70 | ||
71 | score_mean = np.array(scores).mean() |
|
72 | assert min_score_accept < score_mean |
|
73 | ||
74 | ||
75 | def test_TabuOptimizer_convergence(): |
|
@@ 35-52 (lines=18) @@ | ||
32 | min_score_accept = -500 |
|
33 | ||
34 | ||
35 | def test_HillClimbingOptimizer_convergence(): |
|
36 | scores = [] |
|
37 | for rnd_st in tqdm(range(n_opts)): |
|
38 | opt = HillClimbingOptimizer(search_space) |
|
39 | opt.search( |
|
40 | objective_function, |
|
41 | n_iter=n_iter, |
|
42 | random_state=rnd_st, |
|
43 | memory=False, |
|
44 | print_results=False, |
|
45 | progress_bar=False, |
|
46 | initialize=initialize, |
|
47 | ) |
|
48 | ||
49 | scores.append(opt.best_score) |
|
50 | ||
51 | score_mean = np.array(scores).mean() |
|
52 | assert min_score_accept < score_mean |
|
53 | ||
54 | ||
55 | def test_StochasticHillClimbingOptimizer_convergence(): |