Code Duplication    Length = 18-18 lines in 14 locations

tests/test_convex_convergence.py 14 locations

@@ 295-312 (lines=18) @@
292
    assert min_score_accept < score_mean
293
294
295
def test_EnsembleOptimizer_convergence():
296
    scores = []
297
    for rnd_st in tqdm(range(n_opts)):
298
        opt = EnsembleOptimizer(search_space)
299
        opt.search(
300
            objective_function,
301
            n_iter=int(n_iter / 2),
302
            random_state=rnd_st,
303
            memory=False,
304
            print_results=False,
305
            progress_bar=False,
306
            initialize=initialize,
307
        )
308
309
        scores.append(opt.best_score)
310
311
    score_mean = np.array(scores).mean()
312
    assert min_score_accept < score_mean
313
@@ 275-292 (lines=18) @@
272
    assert min_score_accept < score_mean
273
274
275
def test_DecisionTreeOptimizer_convergence():
276
    scores = []
277
    for rnd_st in tqdm(range(n_opts)):
278
        opt = DecisionTreeOptimizer(search_space)
279
        opt.search(
280
            objective_function,
281
            n_iter=int(n_iter / 2),
282
            random_state=rnd_st,
283
            memory=False,
284
            print_results=False,
285
            progress_bar=False,
286
            initialize=initialize,
287
        )
288
289
        scores.append(opt.best_score)
290
291
    score_mean = np.array(scores).mean()
292
    assert min_score_accept < score_mean
293
294
295
def test_EnsembleOptimizer_convergence():
@@ 255-272 (lines=18) @@
252
    assert min_score_accept < score_mean
253
254
255
def test_TreeStructuredParzenEstimators_convergence():
256
    scores = []
257
    for rnd_st in tqdm(range(n_opts)):
258
        opt = TreeStructuredParzenEstimators(search_space)
259
        opt.search(
260
            objective_function,
261
            n_iter=int(n_iter / 2),
262
            random_state=rnd_st,
263
            memory=False,
264
            print_results=False,
265
            progress_bar=False,
266
            initialize=initialize,
267
        )
268
269
        scores.append(opt.best_score)
270
271
    score_mean = np.array(scores).mean()
272
    assert min_score_accept < score_mean
273
274
275
def test_DecisionTreeOptimizer_convergence():
@@ 235-252 (lines=18) @@
232
    assert min_score_accept < score_mean
233
234
235
def test_BayesianOptimizer_convergence():
236
    scores = []
237
    for rnd_st in tqdm(range(n_opts)):
238
        opt = BayesianOptimizer(search_space)
239
        opt.search(
240
            objective_function,
241
            n_iter=int(n_iter / 2),
242
            random_state=rnd_st,
243
            memory=False,
244
            print_results=False,
245
            progress_bar=False,
246
            initialize=initialize,
247
        )
248
249
        scores.append(opt.best_score)
250
251
    score_mean = np.array(scores).mean()
252
    assert min_score_accept < score_mean
253
254
255
def test_TreeStructuredParzenEstimators_convergence():
@@ 215-232 (lines=18) @@
212
    assert min_score_accept < score_mean
213
214
215
def test_EvolutionStrategyOptimizer_convergence():
216
    scores = []
217
    for rnd_st in tqdm(range(n_opts)):
218
        opt = EvolutionStrategyOptimizer(search_space)
219
        opt.search(
220
            objective_function,
221
            n_iter=n_iter,
222
            random_state=rnd_st,
223
            memory=False,
224
            print_results=False,
225
            progress_bar=False,
226
            initialize=initialize,
227
        )
228
229
        scores.append(opt.best_score)
230
231
    score_mean = np.array(scores).mean()
232
    assert min_score_accept < score_mean
233
234
235
def test_BayesianOptimizer_convergence():
@@ 195-212 (lines=18) @@
192
    assert min_score_accept < score_mean
193
194
195
def test_ParticleSwarmOptimizer_convergence():
196
    scores = []
197
    for rnd_st in tqdm(range(n_opts)):
198
        opt = ParticleSwarmOptimizer(search_space)
199
        opt.search(
200
            objective_function,
201
            n_iter=n_iter,
202
            random_state=rnd_st,
203
            memory=False,
204
            print_results=False,
205
            progress_bar=False,
206
            initialize=initialize,
207
        )
208
209
        scores.append(opt.best_score)
210
211
    score_mean = np.array(scores).mean()
212
    assert min_score_accept < score_mean
213
214
215
def test_EvolutionStrategyOptimizer_convergence():
@@ 175-192 (lines=18) @@
172
    assert min_score_accept < score_mean
173
174
175
def test_ParallelTemperingOptimizer_convergence():
176
    scores = []
177
    for rnd_st in tqdm(range(n_opts)):
178
        opt = ParallelTemperingOptimizer(search_space)
179
        opt.search(
180
            objective_function,
181
            n_iter=n_iter,
182
            random_state=rnd_st,
183
            memory=False,
184
            print_results=False,
185
            progress_bar=False,
186
            initialize=initialize,
187
        )
188
189
        scores.append(opt.best_score)
190
191
    score_mean = np.array(scores).mean()
192
    assert min_score_accept < score_mean
193
194
195
def test_ParticleSwarmOptimizer_convergence():
@@ 155-172 (lines=18) @@
152
    assert min_score_accept < score_mean
153
154
155
def test_SimulatedAnnealingOptimizer_convergence():
156
    scores = []
157
    for rnd_st in tqdm(range(n_opts)):
158
        opt = SimulatedAnnealingOptimizer(search_space)
159
        opt.search(
160
            objective_function,
161
            n_iter=n_iter,
162
            random_state=rnd_st,
163
            memory=False,
164
            print_results=False,
165
            progress_bar=False,
166
            initialize=initialize,
167
        )
168
169
        scores.append(opt.best_score)
170
171
    score_mean = np.array(scores).mean()
172
    assert min_score_accept < score_mean
173
174
175
def test_ParallelTemperingOptimizer_convergence():
@@ 135-152 (lines=18) @@
132
    assert min_score_accept < score_mean
133
134
135
def test_RandomAnnealingOptimizer_convergence():
136
    scores = []
137
    for rnd_st in tqdm(range(n_opts)):
138
        opt = RandomAnnealingOptimizer(search_space)
139
        opt.search(
140
            objective_function,
141
            n_iter=n_iter,
142
            random_state=rnd_st,
143
            memory=False,
144
            print_results=False,
145
            progress_bar=False,
146
            initialize=initialize,
147
        )
148
149
        scores.append(opt.best_score)
150
151
    score_mean = np.array(scores).mean()
152
    assert min_score_accept < score_mean
153
154
155
def test_SimulatedAnnealingOptimizer_convergence():
@@ 115-132 (lines=18) @@
112
    assert min_score_accept < score_mean
113
114
115
def test_RandomRestartHillClimbingOptimizer_convergence():
116
    scores = []
117
    for rnd_st in tqdm(range(n_opts)):
118
        opt = RandomRestartHillClimbingOptimizer(search_space)
119
        opt.search(
120
            objective_function,
121
            n_iter=n_iter,
122
            random_state=rnd_st,
123
            memory=False,
124
            print_results=False,
125
            progress_bar=False,
126
            initialize=initialize,
127
        )
128
129
        scores.append(opt.best_score)
130
131
    score_mean = np.array(scores).mean()
132
    assert min_score_accept < score_mean
133
134
135
def test_RandomAnnealingOptimizer_convergence():
@@ 95-112 (lines=18) @@
92
    assert min_score_accept < score_mean
93
94
95
def test_RandomSearchOptimizer_convergence():
96
    scores = []
97
    for rnd_st in tqdm(range(n_opts)):
98
        opt = RandomSearchOptimizer(search_space)
99
        opt.search(
100
            objective_function,
101
            n_iter=n_iter,
102
            random_state=rnd_st,
103
            memory=False,
104
            print_results=False,
105
            progress_bar=False,
106
            initialize=initialize,
107
        )
108
109
        scores.append(opt.best_score)
110
111
    score_mean = np.array(scores).mean()
112
    assert min_score_accept < score_mean
113
114
115
def test_RandomRestartHillClimbingOptimizer_convergence():
@@ 75-92 (lines=18) @@
72
    assert min_score_accept < score_mean
73
74
75
def test_TabuOptimizer_convergence():
76
    scores = []
77
    for rnd_st in tqdm(range(n_opts)):
78
        opt = TabuOptimizer(search_space)
79
        opt.search(
80
            objective_function,
81
            n_iter=n_iter,
82
            random_state=rnd_st,
83
            memory=False,
84
            print_results=False,
85
            progress_bar=False,
86
            initialize=initialize,
87
        )
88
89
        scores.append(opt.best_score)
90
91
    score_mean = np.array(scores).mean()
92
    assert min_score_accept < score_mean
93
94
95
def test_RandomSearchOptimizer_convergence():
@@ 55-72 (lines=18) @@
52
    assert min_score_accept < score_mean
53
54
55
def test_StochasticHillClimbingOptimizer_convergence():
56
    scores = []
57
    for rnd_st in tqdm(range(n_opts)):
58
        opt = StochasticHillClimbingOptimizer(search_space)
59
        opt.search(
60
            objective_function,
61
            n_iter=n_iter,
62
            random_state=rnd_st,
63
            memory=False,
64
            print_results=False,
65
            progress_bar=False,
66
            initialize=initialize,
67
        )
68
69
        scores.append(opt.best_score)
70
71
    score_mean = np.array(scores).mean()
72
    assert min_score_accept < score_mean
73
74
75
def test_TabuOptimizer_convergence():
@@ 35-52 (lines=18) @@
32
min_score_accept = -500
33
34
35
def test_HillClimbingOptimizer_convergence():
36
    scores = []
37
    for rnd_st in tqdm(range(n_opts)):
38
        opt = HillClimbingOptimizer(search_space)
39
        opt.search(
40
            objective_function,
41
            n_iter=n_iter,
42
            random_state=rnd_st,
43
            memory=False,
44
            print_results=False,
45
            progress_bar=False,
46
            initialize=initialize,
47
        )
48
49
        scores.append(opt.best_score)
50
51
    score_mean = np.array(scores).mean()
52
    assert min_score_accept < score_mean
53
54
55
def test_StochasticHillClimbingOptimizer_convergence():