| @@ 295-312 (lines=18) @@ | ||
| 292 | assert min_score_accept < score_mean |
|
| 293 | ||
| 294 | ||
| 295 | def test_EnsembleOptimizer_convergence(): |
|
| 296 | scores = [] |
|
| 297 | for rnd_st in tqdm(range(n_opts)): |
|
| 298 | opt = EnsembleOptimizer(search_space) |
|
| 299 | opt.search( |
|
| 300 | objective_function, |
|
| 301 | n_iter=int(n_iter / 2), |
|
| 302 | random_state=rnd_st, |
|
| 303 | memory=False, |
|
| 304 | print_results=False, |
|
| 305 | progress_bar=False, |
|
| 306 | initialize=initialize, |
|
| 307 | ) |
|
| 308 | ||
| 309 | scores.append(opt.best_score) |
|
| 310 | ||
| 311 | score_mean = np.array(scores).mean() |
|
| 312 | assert min_score_accept < score_mean |
|
| 313 | ||
| @@ 275-292 (lines=18) @@ | ||
| 272 | assert min_score_accept < score_mean |
|
| 273 | ||
| 274 | ||
| 275 | def test_DecisionTreeOptimizer_convergence(): |
|
| 276 | scores = [] |
|
| 277 | for rnd_st in tqdm(range(n_opts)): |
|
| 278 | opt = DecisionTreeOptimizer(search_space) |
|
| 279 | opt.search( |
|
| 280 | objective_function, |
|
| 281 | n_iter=int(n_iter / 2), |
|
| 282 | random_state=rnd_st, |
|
| 283 | memory=False, |
|
| 284 | print_results=False, |
|
| 285 | progress_bar=False, |
|
| 286 | initialize=initialize, |
|
| 287 | ) |
|
| 288 | ||
| 289 | scores.append(opt.best_score) |
|
| 290 | ||
| 291 | score_mean = np.array(scores).mean() |
|
| 292 | assert min_score_accept < score_mean |
|
| 293 | ||
| 294 | ||
| 295 | def test_EnsembleOptimizer_convergence(): |
|
| @@ 255-272 (lines=18) @@ | ||
| 252 | assert min_score_accept < score_mean |
|
| 253 | ||
| 254 | ||
| 255 | def test_TreeStructuredParzenEstimators_convergence(): |
|
| 256 | scores = [] |
|
| 257 | for rnd_st in tqdm(range(n_opts)): |
|
| 258 | opt = TreeStructuredParzenEstimators(search_space) |
|
| 259 | opt.search( |
|
| 260 | objective_function, |
|
| 261 | n_iter=int(n_iter / 2), |
|
| 262 | random_state=rnd_st, |
|
| 263 | memory=False, |
|
| 264 | print_results=False, |
|
| 265 | progress_bar=False, |
|
| 266 | initialize=initialize, |
|
| 267 | ) |
|
| 268 | ||
| 269 | scores.append(opt.best_score) |
|
| 270 | ||
| 271 | score_mean = np.array(scores).mean() |
|
| 272 | assert min_score_accept < score_mean |
|
| 273 | ||
| 274 | ||
| 275 | def test_DecisionTreeOptimizer_convergence(): |
|
| @@ 235-252 (lines=18) @@ | ||
| 232 | assert min_score_accept < score_mean |
|
| 233 | ||
| 234 | ||
| 235 | def test_BayesianOptimizer_convergence(): |
|
| 236 | scores = [] |
|
| 237 | for rnd_st in tqdm(range(n_opts)): |
|
| 238 | opt = BayesianOptimizer(search_space) |
|
| 239 | opt.search( |
|
| 240 | objective_function, |
|
| 241 | n_iter=int(n_iter / 2), |
|
| 242 | random_state=rnd_st, |
|
| 243 | memory=False, |
|
| 244 | print_results=False, |
|
| 245 | progress_bar=False, |
|
| 246 | initialize=initialize, |
|
| 247 | ) |
|
| 248 | ||
| 249 | scores.append(opt.best_score) |
|
| 250 | ||
| 251 | score_mean = np.array(scores).mean() |
|
| 252 | assert min_score_accept < score_mean |
|
| 253 | ||
| 254 | ||
| 255 | def test_TreeStructuredParzenEstimators_convergence(): |
|
| @@ 215-232 (lines=18) @@ | ||
| 212 | assert min_score_accept < score_mean |
|
| 213 | ||
| 214 | ||
| 215 | def test_EvolutionStrategyOptimizer_convergence(): |
|
| 216 | scores = [] |
|
| 217 | for rnd_st in tqdm(range(n_opts)): |
|
| 218 | opt = EvolutionStrategyOptimizer(search_space) |
|
| 219 | opt.search( |
|
| 220 | objective_function, |
|
| 221 | n_iter=n_iter, |
|
| 222 | random_state=rnd_st, |
|
| 223 | memory=False, |
|
| 224 | print_results=False, |
|
| 225 | progress_bar=False, |
|
| 226 | initialize=initialize, |
|
| 227 | ) |
|
| 228 | ||
| 229 | scores.append(opt.best_score) |
|
| 230 | ||
| 231 | score_mean = np.array(scores).mean() |
|
| 232 | assert min_score_accept < score_mean |
|
| 233 | ||
| 234 | ||
| 235 | def test_BayesianOptimizer_convergence(): |
|
| @@ 195-212 (lines=18) @@ | ||
| 192 | assert min_score_accept < score_mean |
|
| 193 | ||
| 194 | ||
| 195 | def test_ParticleSwarmOptimizer_convergence(): |
|
| 196 | scores = [] |
|
| 197 | for rnd_st in tqdm(range(n_opts)): |
|
| 198 | opt = ParticleSwarmOptimizer(search_space) |
|
| 199 | opt.search( |
|
| 200 | objective_function, |
|
| 201 | n_iter=n_iter, |
|
| 202 | random_state=rnd_st, |
|
| 203 | memory=False, |
|
| 204 | print_results=False, |
|
| 205 | progress_bar=False, |
|
| 206 | initialize=initialize, |
|
| 207 | ) |
|
| 208 | ||
| 209 | scores.append(opt.best_score) |
|
| 210 | ||
| 211 | score_mean = np.array(scores).mean() |
|
| 212 | assert min_score_accept < score_mean |
|
| 213 | ||
| 214 | ||
| 215 | def test_EvolutionStrategyOptimizer_convergence(): |
|
| @@ 175-192 (lines=18) @@ | ||
| 172 | assert min_score_accept < score_mean |
|
| 173 | ||
| 174 | ||
| 175 | def test_ParallelTemperingOptimizer_convergence(): |
|
| 176 | scores = [] |
|
| 177 | for rnd_st in tqdm(range(n_opts)): |
|
| 178 | opt = ParallelTemperingOptimizer(search_space) |
|
| 179 | opt.search( |
|
| 180 | objective_function, |
|
| 181 | n_iter=n_iter, |
|
| 182 | random_state=rnd_st, |
|
| 183 | memory=False, |
|
| 184 | print_results=False, |
|
| 185 | progress_bar=False, |
|
| 186 | initialize=initialize, |
|
| 187 | ) |
|
| 188 | ||
| 189 | scores.append(opt.best_score) |
|
| 190 | ||
| 191 | score_mean = np.array(scores).mean() |
|
| 192 | assert min_score_accept < score_mean |
|
| 193 | ||
| 194 | ||
| 195 | def test_ParticleSwarmOptimizer_convergence(): |
|
| @@ 155-172 (lines=18) @@ | ||
| 152 | assert min_score_accept < score_mean |
|
| 153 | ||
| 154 | ||
| 155 | def test_SimulatedAnnealingOptimizer_convergence(): |
|
| 156 | scores = [] |
|
| 157 | for rnd_st in tqdm(range(n_opts)): |
|
| 158 | opt = SimulatedAnnealingOptimizer(search_space) |
|
| 159 | opt.search( |
|
| 160 | objective_function, |
|
| 161 | n_iter=n_iter, |
|
| 162 | random_state=rnd_st, |
|
| 163 | memory=False, |
|
| 164 | print_results=False, |
|
| 165 | progress_bar=False, |
|
| 166 | initialize=initialize, |
|
| 167 | ) |
|
| 168 | ||
| 169 | scores.append(opt.best_score) |
|
| 170 | ||
| 171 | score_mean = np.array(scores).mean() |
|
| 172 | assert min_score_accept < score_mean |
|
| 173 | ||
| 174 | ||
| 175 | def test_ParallelTemperingOptimizer_convergence(): |
|
| @@ 135-152 (lines=18) @@ | ||
| 132 | assert min_score_accept < score_mean |
|
| 133 | ||
| 134 | ||
| 135 | def test_RandomAnnealingOptimizer_convergence(): |
|
| 136 | scores = [] |
|
| 137 | for rnd_st in tqdm(range(n_opts)): |
|
| 138 | opt = RandomAnnealingOptimizer(search_space) |
|
| 139 | opt.search( |
|
| 140 | objective_function, |
|
| 141 | n_iter=n_iter, |
|
| 142 | random_state=rnd_st, |
|
| 143 | memory=False, |
|
| 144 | print_results=False, |
|
| 145 | progress_bar=False, |
|
| 146 | initialize=initialize, |
|
| 147 | ) |
|
| 148 | ||
| 149 | scores.append(opt.best_score) |
|
| 150 | ||
| 151 | score_mean = np.array(scores).mean() |
|
| 152 | assert min_score_accept < score_mean |
|
| 153 | ||
| 154 | ||
| 155 | def test_SimulatedAnnealingOptimizer_convergence(): |
|
| @@ 115-132 (lines=18) @@ | ||
| 112 | assert min_score_accept < score_mean |
|
| 113 | ||
| 114 | ||
| 115 | def test_RandomRestartHillClimbingOptimizer_convergence(): |
|
| 116 | scores = [] |
|
| 117 | for rnd_st in tqdm(range(n_opts)): |
|
| 118 | opt = RandomRestartHillClimbingOptimizer(search_space) |
|
| 119 | opt.search( |
|
| 120 | objective_function, |
|
| 121 | n_iter=n_iter, |
|
| 122 | random_state=rnd_st, |
|
| 123 | memory=False, |
|
| 124 | print_results=False, |
|
| 125 | progress_bar=False, |
|
| 126 | initialize=initialize, |
|
| 127 | ) |
|
| 128 | ||
| 129 | scores.append(opt.best_score) |
|
| 130 | ||
| 131 | score_mean = np.array(scores).mean() |
|
| 132 | assert min_score_accept < score_mean |
|
| 133 | ||
| 134 | ||
| 135 | def test_RandomAnnealingOptimizer_convergence(): |
|
| @@ 95-112 (lines=18) @@ | ||
| 92 | assert min_score_accept < score_mean |
|
| 93 | ||
| 94 | ||
| 95 | def test_RandomSearchOptimizer_convergence(): |
|
| 96 | scores = [] |
|
| 97 | for rnd_st in tqdm(range(n_opts)): |
|
| 98 | opt = RandomSearchOptimizer(search_space) |
|
| 99 | opt.search( |
|
| 100 | objective_function, |
|
| 101 | n_iter=n_iter, |
|
| 102 | random_state=rnd_st, |
|
| 103 | memory=False, |
|
| 104 | print_results=False, |
|
| 105 | progress_bar=False, |
|
| 106 | initialize=initialize, |
|
| 107 | ) |
|
| 108 | ||
| 109 | scores.append(opt.best_score) |
|
| 110 | ||
| 111 | score_mean = np.array(scores).mean() |
|
| 112 | assert min_score_accept < score_mean |
|
| 113 | ||
| 114 | ||
| 115 | def test_RandomRestartHillClimbingOptimizer_convergence(): |
|
| @@ 75-92 (lines=18) @@ | ||
| 72 | assert min_score_accept < score_mean |
|
| 73 | ||
| 74 | ||
| 75 | def test_TabuOptimizer_convergence(): |
|
| 76 | scores = [] |
|
| 77 | for rnd_st in tqdm(range(n_opts)): |
|
| 78 | opt = TabuOptimizer(search_space) |
|
| 79 | opt.search( |
|
| 80 | objective_function, |
|
| 81 | n_iter=n_iter, |
|
| 82 | random_state=rnd_st, |
|
| 83 | memory=False, |
|
| 84 | print_results=False, |
|
| 85 | progress_bar=False, |
|
| 86 | initialize=initialize, |
|
| 87 | ) |
|
| 88 | ||
| 89 | scores.append(opt.best_score) |
|
| 90 | ||
| 91 | score_mean = np.array(scores).mean() |
|
| 92 | assert min_score_accept < score_mean |
|
| 93 | ||
| 94 | ||
| 95 | def test_RandomSearchOptimizer_convergence(): |
|
| @@ 55-72 (lines=18) @@ | ||
| 52 | assert min_score_accept < score_mean |
|
| 53 | ||
| 54 | ||
| 55 | def test_StochasticHillClimbingOptimizer_convergence(): |
|
| 56 | scores = [] |
|
| 57 | for rnd_st in tqdm(range(n_opts)): |
|
| 58 | opt = StochasticHillClimbingOptimizer(search_space) |
|
| 59 | opt.search( |
|
| 60 | objective_function, |
|
| 61 | n_iter=n_iter, |
|
| 62 | random_state=rnd_st, |
|
| 63 | memory=False, |
|
| 64 | print_results=False, |
|
| 65 | progress_bar=False, |
|
| 66 | initialize=initialize, |
|
| 67 | ) |
|
| 68 | ||
| 69 | scores.append(opt.best_score) |
|
| 70 | ||
| 71 | score_mean = np.array(scores).mean() |
|
| 72 | assert min_score_accept < score_mean |
|
| 73 | ||
| 74 | ||
| 75 | def test_TabuOptimizer_convergence(): |
|
| @@ 35-52 (lines=18) @@ | ||
| 32 | min_score_accept = -500 |
|
| 33 | ||
| 34 | ||
| 35 | def test_HillClimbingOptimizer_convergence(): |
|
| 36 | scores = [] |
|
| 37 | for rnd_st in tqdm(range(n_opts)): |
|
| 38 | opt = HillClimbingOptimizer(search_space) |
|
| 39 | opt.search( |
|
| 40 | objective_function, |
|
| 41 | n_iter=n_iter, |
|
| 42 | random_state=rnd_st, |
|
| 43 | memory=False, |
|
| 44 | print_results=False, |
|
| 45 | progress_bar=False, |
|
| 46 | initialize=initialize, |
|
| 47 | ) |
|
| 48 | ||
| 49 | scores.append(opt.best_score) |
|
| 50 | ||
| 51 | score_mean = np.array(scores).mean() |
|
| 52 | assert min_score_accept < score_mean |
|
| 53 | ||
| 54 | ||
| 55 | def test_StochasticHillClimbingOptimizer_convergence(): |
|