Code Duplication    Length = 21-24 lines in 3 locations

tests/test_optimizers/test_random_state.py 3 locations

@@ 95-118 (lines=24) @@
92
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) > err
93
94
95
def test_random_state_direct():
96
    opt0 = DirectAlgorithm(
97
        search_space, initialize={"random": n_random}, random_state=1
98
    )
99
    opt0.search(
100
        objective_function,
101
        n_iter=n_iter,
102
    )
103
104
    opt1 = DirectAlgorithm(
105
        search_space, initialize={"random": n_random}, random_state=10
106
    )
107
    opt1.search(
108
        objective_function,
109
        n_iter=n_iter,
110
    )
111
112
    print("\n opt0.search_data \n", opt0.search_data)
113
    print("\n opt1.search_data \n", opt1.search_data)
114
115
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
116
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
117
118
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
119
120
121
@pytest.mark.parametrize(*optimizers)
@@ 72-92 (lines=21) @@
69
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
70
71
72
@pytest.mark.parametrize(*optimizers)
73
def test_random_state_2(Optimizer):
74
    opt0 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
75
    opt0.search(
76
        objective_function,
77
        n_iter=n_iter,
78
    )
79
80
    opt1 = Optimizer(search_space, initialize={"random": n_random}, random_state=10)
81
    opt1.search(
82
        objective_function,
83
        n_iter=n_iter,
84
    )
85
86
    print("\n opt0.search_data \n", opt0.search_data)
87
    print("\n opt1.search_data \n", opt1.search_data)
88
89
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
90
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
91
92
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) > err
93
94
95
def test_random_state_direct():
@@ 29-49 (lines=21) @@
26
n_last = n_iter - n_random
27
28
29
@pytest.mark.parametrize(*optimizers)
30
def test_random_state_0(Optimizer):
31
    opt0 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
32
    opt0.search(
33
        objective_function,
34
        n_iter=n_iter,
35
    )
36
37
    opt1 = Optimizer(search_space, initialize={"random": n_random}, random_state=1)
38
    opt1.search(
39
        objective_function,
40
        n_iter=n_iter,
41
    )
42
43
    print("\n opt0.search_data \n", opt0.search_data)
44
    print("\n opt1.search_data \n", opt1.search_data)
45
46
    n_last_scores0 = list(opt0.search_data["score"].values)[-n_last:]
47
    n_last_scores1 = list(opt1.search_data["score"].values)[-n_last:]
48
49
    assert abs(np.sum(n_last_scores0) - np.sum(n_last_scores1)) < err
50
51
52
@pytest.mark.parametrize(*optimizers)