Code Duplication    Length = 28-30 lines in 2 locations

tests/local_test_performance/local_test_local_opt.py 1 location

@@ 24-51 (lines=28) @@
21
)
22
23
24
@pytest.mark.parametrize(*opt_local_l)
25
def test_local_perf(Optimizer):
26
    def objective_function(para):
27
        score = -para["x1"] * para["x1"]
28
        return score
29
30
    search_space = {"x1": np.arange(-100, 101, 1)}
31
    initialize = {"vertices": 2}
32
33
    n_opts = 33
34
    n_iter = 100
35
36
    scores = []
37
    for rnd_st in tqdm(range(n_opts)):
38
        opt = Optimizer(search_space, initialize=initialize, random_state=rnd_st)
39
        opt.search(
40
            objective_function,
41
            n_iter=n_iter,
42
            memory=False,
43
            verbosity=False,
44
        )
45
46
        scores.append(opt.best_score)
47
    score_mean = np.array(scores).mean()
48
49
    print("\n score_mean", score_mean)
50
51
    assert score_mean > -5
52

tests/local_test_performance/local_test_global_opt.py 1 location

@@ 24-53 (lines=30) @@
21
)
22
23
24
@pytest.mark.parametrize(*opt_global_l)
25
def test_global_perf(Optimizer):
26
    ackley_function = RastriginFunction(n_dim=1, metric="score")
27
28
    def objective_function(para):
29
        score = -para["x1"] * para["x1"]
30
        return score
31
32
    search_space = {"x1": np.arange(-100, 101, 1)}
33
    initialize = {"vertices": 2}
34
35
    n_opts = 33
36
    n_iter = 100
37
38
    scores = []
39
    for rnd_st in tqdm(range(n_opts)):
40
        opt = Optimizer(search_space, initialize=initialize, random_state=rnd_st)
41
        opt.search(
42
            objective_function,
43
            n_iter=n_iter,
44
            memory=False,
45
            verbosity=False,
46
        )
47
48
        scores.append(opt.best_score)
49
    score_mean = np.array(scores).mean()
50
51
    print("\n score_mean", score_mean)
52
53
    assert score_mean > -5
54