Code Duplication    Length = 53-55 lines in 2 locations

src/gradient_free_optimizers/optimizer_search/parallel_tempering.py 1 location

@@ 13-67 (lines=55) @@
10
)
11
12
13
class ParallelTemperingOptimizer(_ParallelTemperingOptimizer, Search):
14
    """
15
    A class implementing **parallel tempering** for the public API.
16
    Inheriting from the `Search`-class to get the `search`-method and from
17
    the `ParallelTemperingOptimizer`-backend to get the underlying algorithm.
18
19
    Parameters
20
    ----------
21
    search_space : dict[str, list]
22
        The search space to explore. A dictionary with parameter
23
        names as keys and a numpy array as values.
24
    initialize : dict[str, int]
25
        The method to generate initial positions. A dictionary with
26
        the following key literals and the corresponding value type:
27
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
28
    constraints : list[callable]
29
        A list of constraints, where each constraint is a callable.
30
        The callable returns `True` or `False` dependend on the input parameters.
31
    random_state : None, int
32
        If None, create a new random state. If int, create a new random state
33
        seeded with the value.
34
    rand_rest_p : float
35
        The probability of a random iteration during the the search process.
36
    population : int
37
        The number of simulated annealers in the population.
38
    n_iter_swap : int
39
        The number of iterations the algorithm performs before switching temperatures of the individual optimizers in the population.
40
    """
41
42
    def __init__(
43
        self,
44
        search_space: Dict[str, list],
45
        initialize: Dict[
46
            Literal["grid", "vertices", "random", "warm_start"],
47
            Union[int, list[dict]],
48
        ] = {"grid": 4, "random": 2, "vertices": 4},
49
        constraints: List[callable] = [],
50
        random_state: int = None,
51
        rand_rest_p: float = 0,
52
        nth_process: int = None,
53
        population: int = 5,
54
        n_iter_swap: int = 5,
55
    ):
56
        super().__init__(
57
            search_space=search_space,
58
            initialize=initialize,
59
            constraints=constraints,
60
            random_state=random_state,
61
            rand_rest_p=rand_rest_p,
62
            nth_process=nth_process,
63
            population=population,
64
            n_iter_swap=n_iter_swap,
65
        )
66

src/gradient_free_optimizers/optimizer_search/spiral_optimization.py 1 location

@@ 11-63 (lines=53) @@
8
from ..optimizers import SpiralOptimization as _SpiralOptimization
9
10
11
class SpiralOptimization(_SpiralOptimization, Search):
12
    """
13
    A class implementing the **spiral optimizer** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `SpiralOptimization`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    population : int
35
        The number of particles in the swarm.
36
    decay_rate : float
37
        This parameter is a factor, that influences the radius of the particles during their spiral movement.
38
        Lower values accelerates the convergence of the particles to the best known position, while values above 1 eventually lead to a movement where the particles spiral away from each other.
39
    """
40
41
    def __init__(
42
        self,
43
        search_space: Dict[str, list],
44
        initialize: Dict[
45
            Literal["grid", "vertices", "random", "warm_start"],
46
            Union[int, list[dict]],
47
        ] = {"grid": 4, "random": 2, "vertices": 4},
48
        constraints: List[callable] = [],
49
        random_state: int = None,
50
        rand_rest_p: float = 0,
51
        nth_process: int = None,
52
        population: int = 10,
53
        decay_rate: float = 0.99,
54
    ):
55
        super().__init__(
56
            search_space=search_space,
57
            initialize=initialize,
58
            constraints=constraints,
59
            random_state=random_state,
60
            rand_rest_p=rand_rest_p,
61
            nth_process=nth_process,
62
            population=population,
63
            decay_rate=decay_rate,
64
        )
65