@@ 13-67 (lines=55) @@ | ||
10 | ) |
|
11 | ||
12 | ||
13 | class ParallelTemperingOptimizer(_ParallelTemperingOptimizer, Search): |
|
14 | """ |
|
15 | A class implementing **parallel tempering** for the public API. |
|
16 | Inheriting from the `Search`-class to get the `search`-method and from |
|
17 | the `ParallelTemperingOptimizer`-backend to get the underlying algorithm. |
|
18 | ||
19 | Parameters |
|
20 | ---------- |
|
21 | search_space : dict[str, list] |
|
22 | The search space to explore. A dictionary with parameter |
|
23 | names as keys and a numpy array as values. |
|
24 | initialize : dict[str, int] |
|
25 | The method to generate initial positions. A dictionary with |
|
26 | the following key literals and the corresponding value type: |
|
27 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
28 | constraints : list[callable] |
|
29 | A list of constraints, where each constraint is a callable. |
|
30 | The callable returns `True` or `False` dependend on the input parameters. |
|
31 | random_state : None, int |
|
32 | If None, create a new random state. If int, create a new random state |
|
33 | seeded with the value. |
|
34 | rand_rest_p : float |
|
35 | The probability of a random iteration during the the search process. |
|
36 | population : int |
|
37 | The number of simulated annealers in the population. |
|
38 | n_iter_swap : int |
|
39 | The number of iterations the algorithm performs before switching temperatures of the individual optimizers in the population. |
|
40 | """ |
|
41 | ||
42 | def __init__( |
|
43 | self, |
|
44 | search_space: Dict[str, list], |
|
45 | initialize: Dict[ |
|
46 | Literal["grid", "vertices", "random", "warm_start"], |
|
47 | Union[int, list[dict]], |
|
48 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
49 | constraints: List[callable] = [], |
|
50 | random_state: int = None, |
|
51 | rand_rest_p: float = 0, |
|
52 | nth_process: int = None, |
|
53 | population: int = 5, |
|
54 | n_iter_swap: int = 5, |
|
55 | ): |
|
56 | super().__init__( |
|
57 | search_space=search_space, |
|
58 | initialize=initialize, |
|
59 | constraints=constraints, |
|
60 | random_state=random_state, |
|
61 | rand_rest_p=rand_rest_p, |
|
62 | nth_process=nth_process, |
|
63 | population=population, |
|
64 | n_iter_swap=n_iter_swap, |
|
65 | ) |
|
66 |
@@ 11-63 (lines=53) @@ | ||
8 | from ..optimizers import SpiralOptimization as _SpiralOptimization |
|
9 | ||
10 | ||
11 | class SpiralOptimization(_SpiralOptimization, Search): |
|
12 | """ |
|
13 | A class implementing the **spiral optimizer** for the public API. |
|
14 | Inheriting from the `Search`-class to get the `search`-method and from |
|
15 | the `SpiralOptimization`-backend to get the underlying algorithm. |
|
16 | ||
17 | Parameters |
|
18 | ---------- |
|
19 | search_space : dict[str, list] |
|
20 | The search space to explore. A dictionary with parameter |
|
21 | names as keys and a numpy array as values. |
|
22 | initialize : dict[str, int] |
|
23 | The method to generate initial positions. A dictionary with |
|
24 | the following key literals and the corresponding value type: |
|
25 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
26 | constraints : list[callable] |
|
27 | A list of constraints, where each constraint is a callable. |
|
28 | The callable returns `True` or `False` dependend on the input parameters. |
|
29 | random_state : None, int |
|
30 | If None, create a new random state. If int, create a new random state |
|
31 | seeded with the value. |
|
32 | rand_rest_p : float |
|
33 | The probability of a random iteration during the the search process. |
|
34 | population : int |
|
35 | The number of particles in the swarm. |
|
36 | decay_rate : float |
|
37 | This parameter is a factor, that influences the radius of the particles during their spiral movement. |
|
38 | Lower values accelerates the convergence of the particles to the best known position, while values above 1 eventually lead to a movement where the particles spiral away from each other. |
|
39 | """ |
|
40 | ||
41 | def __init__( |
|
42 | self, |
|
43 | search_space: Dict[str, list], |
|
44 | initialize: Dict[ |
|
45 | Literal["grid", "vertices", "random", "warm_start"], |
|
46 | Union[int, list[dict]], |
|
47 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
48 | constraints: List[callable] = [], |
|
49 | random_state: int = None, |
|
50 | rand_rest_p: float = 0, |
|
51 | nth_process: int = None, |
|
52 | population: int = 10, |
|
53 | decay_rate: float = 0.99, |
|
54 | ): |
|
55 | super().__init__( |
|
56 | search_space=search_space, |
|
57 | initialize=initialize, |
|
58 | constraints=constraints, |
|
59 | random_state=random_state, |
|
60 | rand_rest_p=rand_rest_p, |
|
61 | nth_process=nth_process, |
|
62 | population=population, |
|
63 | decay_rate=decay_rate, |
|
64 | ) |
|
65 |